]> pMML2SVG test
algebraic-projection-error A p 2 = i d alg 2 ( x i , P X i ) = i x i × P X i 2
alternatives p i j = { μ if  j  can produce  i 0 otherwise p i X = λ < μ
arrows x clearly maps to y
baseline-msqrt x + n3 + l 8 p 6
baseline x 7 + x 7 4 + x x 3 = n x 7
Bernoulli a x 2 x x
binomial x 2 + b a x + ( b 2 a ) 2 = c a + ( b 2 a ) 2
cauchy ( k = 1 n a k b k ) 2 ( k = 1 n a k 2 ) ( k = 1 n b k 2 )
DLTrows P X i = [ p 1 T X i p 2 T X i p 3 T X i ]
Ealt2 C x ̂ T ( C C × C x ̂ ) = 0 x ̂ T ( t × ( R x ̂ ) ) = 0 x ̂ T E x ̂ = 0  with  E = [ t ] × R
Einstein E = m c 2
elaborate-likelihood P ( patches | pattern  j ) = P ( i : n i  patches of type  i  from pattern, n I i n i  patches of type  i  from noise | pattern  j ) = i P ( patch of type  i | pattern  j ) n i i P ( patch of type  i | noise ) n I i n i = i ( p i j n i p i X n I i n i )
eqn1 x 2 + 4 x + 4 = 0
example1 a 0 + 1 a 1 + 1 a 2 + 1 a 3 + 1 a 4
example2 x y b a z c d
example3 1 + 1 + 1 + 1 + 1 + 1 + 1 + x
example5 x x x x 2 + x x x x 2 + 99 x + y 3 2
Fibonacci f n 1 f n
Fourier F ( g ( x , y ) ) ( u , v ) = g ( x , y ) e i 2 π ( u x + v y ) d x d y e i 2 π ( u x + v y ) = cos ( 2 π ( u x + v y ) ) + i sin ( 2 π ( u x + v y ) )
fractest1 x 1 + x 2 + x 3 = x 4 2
fractest2 x = 1 2 1 2
frac 2 a b + c d
F x = H π x l = e × x l = [ e ] × H π x l = F x
hard 7 4 + 6 8 5 4 23 445 + 9 1 2 43 21 2 6 8 5 4 23 445 + 9 1 2 59 + 43 21
intNested3 single integral x M x o A o x A A M . '' double integral x M x o A o x A A M . '' double nested integral x M x o A o x A A M . ''
M5 C ( n = 0 a n z n ) z = n = 0 a n C z n z
math-italic f n for  for 𝑓 𝑛 𝑓𝑜𝑟  𝑓𝑜𝑟
mathml-test-suite-torture-complex1 Bernoulli Trials P ( E ) Probability of event E: Get exactly k heads in n coin flips. = ( n k ) Number of ways to get exactly k heads in n coin flips p Probability of getting heads in one flip k Number of heads ( 1 - p ) Probability of getting tails in one flip n - k Number of tails Cauchy-Schwarz Inequality ( k = 1 n a k b k ) 2 ( k = 1 n a k 2 ) ( k = 1 n b k 2 ) Cauchy Formula f ( z ) · I n d γ ( z ) = 1 2 π i γ f ( ξ ) ξ - z d ξ Cross Product V 1 × V 2 = | i j k X u Y u 0 X v Y v 0 | Vandermonde Determinant | 1 1 1 v 1 v 2 v n v 1 2 v 2 2 v n 2 v 1 n - 1 v 2 n - 1 v n n - 1 | = 1 i < j n ( v j - v i ) Lorenz Equations x ˙ = σ ( y - x ) y ˙ = ρ x - y - x z z ˙ = - β z + x y Maxwell's Equations { × B - 1 c E t = 4 π c j · E = 4 π ρ × E + 1 c B t = 0 · B = 0 Einstein Field Equations R μ ν - 1 2 g μ ν R = 8 π G c 4 T μ ν Ramanujan Identity 1 ( ϕ 5 - ϕ ) e 25 π = 1 + e - 2 π 1 + e - 4 π 1 + e - 6 π 1 + e - 8 π 1 + Another Ramanujan identity k = 1 1 2 k · ϕ = 1 2 0 + 1 2 1 + 1 2 1 + 1 2 2 + 1 2 3 + 1 2 5 + Rogers-Ramanujan Identity 1 + k = 1 q k 2 + k ( 1 - q ) ( 1 - q 2 ) ( 1 - q k ) q 2 ( 1 - q ) + q 6 ( 1 - q ) ( 1 - q 2 ) + = j = 0 1 ( 1 - q 5 j + 2 ) ( 1 - q 5 j + 3 ) 1 ( 1 - q 2 ) ( 1 - q 3 ) × 1 ( 1 - q 7 ) ( 1 - q 8 ) × ,         f o r | q | < 1 . Commutative Diagram H K H K
matrix-in-mrow 58730 + ( 58730 0 0 34895 58730 1 684 0 10598 0 1589 58730 0 789 58730 15698 )
menclose default mnaceo longdiv mnaceo actuarial mnaceo radical mnaceo box mnaceo roundedbox mnaceo circle mnaceo left mnaceo right mnaceo top mnaceo bottom mnaceo updiagonalstrike mnaceo downdiagonalstrike mnaceo verticalstrike mnaceo horizontalstrike mnaceo empty attr mnaceo bad attr mnaceo cross out mnaceo radical circle mnaceo all sides and all strikes mnaceo nested roundedbox mnaceo nested circle mnaceo
merror x 8 + 2567 98 + y i 3
mfrac-in-mrow x + 245 subscript 2 2468 m 267
mfrac 2 9 5 x
mover2 x + a + z    vs    x + a x + z
mover3 0    vs    0
mover4 4 0    vs    4 0
mphantom x 8 + 2567 98 + y 3 x 8 + 2567 98 + y 3
mroot-in-mrow x + 245 denominator 2
mroot-with-mfrac 245 x + y 3 2
mroot 245 2
mrow 245 + identifier
mspace 1 + 2 3
msqrt1 x = 3
msqrt2 x x x
msqrt3 x = A + w + m 8 2 i 1 2 + a i 2 a i 5
msqrt-in-mrow mml + 245 + identifier
msqrt 245 + identifier
msub-in-mrow mml + x x x 2
msubsup1 x i 3
msubsup2 x i 3 9 n
msubsup-in-mrow mml + x 2 3
msubsup x = a 2 a 2 l 2 2
msub x x x 2
msup-in-mrow mml + x x x x 2
msup x x x x 2
mtable 58730 358 0 34895 58730 1 684 12 10598 0 1589 58730 0 789 58730 15698
munder x + y + z    vs    x + y + z
Newton1 T 1 = 1 k s 1 2 s 1 s 0 s 0 2 1 k s 1 2 3 2 ± π 2 sin 1 2 s 0 s 1 s 1
primes2 x X x 1 X 1 x X x X
primesrec x x
primes x X x X x' X'
projection x = P X P = K R [ I | c ]    =    K [ R | t ]
quadratic x = b ± b 2 4 a c 2 a
reprojection-error i ( d Maha 2 ( x i , x ̂ i ) + d Maha 2 ( X i , X ̂ i ) )
rotation x = [ cos θ sin θ sin θ cos θ ] x
shift R ( f ) = R ( i f i shift ( e 0 , i ) ) = i f i shift ( R ( e 0 ) , i )
sigma-algebra F S 1 F S 1 ¯ = Ω S 1 F countable  S i F i S i F
size-multiplier x x x x 2 + x x x x 2
size_reduction x x x x 2
stretchy-asymm-msubsup 1 + ( a c 1 2 + 2 3 4 1 )
stretchy-asymm 1 + ( a 1 2 + 2 3 4 1 )
stretchy-symmetric-example 1 + ( a 1 2 + 2 3 4 1 ) + ( a 1 2 + 2 3 4 1 )
stretchy ( a 1 2 3 4 + 2 3 4 1 )
Swarzchild2 d r d t = B 2 r A r 1 B r E J 2 r 2
tokens_width 245 + toto = 5642