Conversion of MathML to
SVG via XSLT: pMML2SVG

Developer Documentation

Jérbme Joslet, Université de Liege <j erome. j osl et @t udent . ul g. ac. be>
Justus H Piater
Professor
Université de Liege Faculty of Applied Sciences Depart-
ment of Electrical Engineering and Computer Science

Conversion of MathML to SVG via XSLT: pMML2SVG: Developer Doc-

umentation

by Jéréme Joslet

Justus H Piater

Professor

Université de Liege Faculty of Applied Sciences Department of Electrical Engineering and Computer Science

Table of Contents

. MaIN SEYIEShEEL ..o e 7
SVOMBSIEIUNIT L.t ettt e e et et e e r e een 8
1] S = TSP SO UPPPPTRPPPIN 9
1011 0 4 TSP PTTSPPPTIRPPN 10
e iMPAIT e e e e e e 11
ElIMSCAIE ...t e 13
L1011 TP PP PRSPPI 14
107 o 1100 o TP SPPPTIRN 15
L1411 QTSP PPPRTT 16
FOWETEIMENT ettt et e et e e e e e e e 17
[0 1= 1LY/ H Lo o | = PP TPPPTT 18
COMPUEESIZE ..ttt e et e ettt e e et e et e et et e et et e et e et e e e enaa s 19
COMPUEESIZEMUIT ...ttt ettt et e e e e e e eenans 20
UNTEINPX o ettt 21
OEESPACELITEIAl ...t e 22
ChOOSEATIIIDULEeeee e e ettt e e e e e e aa e eees 23
QEFONINBMEV BITANT ...ttt et eaaans 24
S S S [P PP PPPPTT 25
SHNGWIAEN o 26
SHNGWIAEN o 27
MAENIMEEN e 28

[1. FOrMBEtiNG MOOEeuiiiitie ettt ettt ettt e et e e na e e e ennns 32
math: mi|math:mn|math:mtextjmath:ms (in formatting Mode)ccoeiiiiiiiiiiiieiiiiiieeees 33
math:mspace (in fFormatting MOOE)oeiiiiiiiieii e 35
math:mo[not(@t:stretchVertical) or @t:stretchVertical != true()] (in formatting mode) 36
math:mo[@t:stretchVertical = true()] (in formatting mode)ccoevivveiiiiiiieiiiineeceinn, 39
ChOOSEENTIY ...t ettt ettt e e et e et e e eaans 40
math: math|math: mrow|math:merror|math:mphantom|math: menclosejmath:mstyle (in format-

TING MOOE) ettt et e ettt e e ettt e e et et e e e e et neeeena e eeeen 41
SUDIVITOW ettt ettt et ettt e e ettt e et ettt e ettt s e e ettt e e e e e b e et e nt e e e erb e aee 43
AlIGNCRITA ..o a4
getStretchyEMBEIiShed ... 45
getNonStretchyEmMBEIlished ... 46
ISEMDEIlIShEd ..o 47
math:maction (in formatting MOAE)ccoertniiiiiii e 48
math:mfenced (in formatting MOTE)uuiiiiiii e 49
MFENCEACOMPOSE ... ettt ettt ettt ettt e ettt e e et et e e et e e e e e ee bt e eeeebanaeeee 51
1 01T PR 52
math:msup (in formatting MOTE)ouuuuiiiii e 53
math:msub (in formatting MOTE)uuuiiiiii e 54
math:msubsup (in formatting MOGE)oiiiiiiiiiiii e 55
math:mover (in formatting MOTE)couuuiiiiii e 56
math:munder (in formatting MOTE)uuiiiiiii e 57
math:munderover (in formatting MOE)uiiiiiiiiiiii e 58
math:mfrac (in Formatting MOTE)oceiiriiiiii e 59
math:msgrt (in formatting MOTE)uuiiiiiiii e 61
math:mroot (in formatting MOOE)iiiiiiiiieii e 62
math:mtable (in formatting MOTE)coeiiiieiiiii e 63
COMPUEESEIFEICN ...ttt e et e ettt e et et e e e e et e e e eeraaeaees 64
MEADIEWIAEN ... e 65
MEADIESNITLY e 66

pPMML2SVG

MEADIESNITEX oot 67
math:mtr (in formatting MOdE)ccoviiiiiii e 68
= 1 g1 (0 69
math:mtd (in formatting MOE)iiiiiiiiiii e 70
SETEECHROWS .o e et et et aae 71
math:mtr (in Stretch MOE)ooviiii e e 72
SEEECNCOIS ...t 73
math:mtd (in Stretch MOTE)ovnii e 74
T B T To o[TP 75
math: mi|math:mn|math: mtextjmath:ms (in draw Mode)cccovviiiiiiiiiiiiiii e, 76
math:mspace (in draw MOOE)couniiiiii e e e e 77
Math:mo (IN draw MOOE)uiiiiiii e e e e e e e een 78
math: math|math: mrow|math: merror|math: mphantom|math: mencl osejmath:mstyle (in draw
10700) PN 79
(01 Y] g o oL = PR 80
Math:msup (iN draw MOE)cvveiiii e e e r e e e e e ees 81
math:msub (in draw MOGE)covviiii e 82
math:msubsup (iN draw MOAE)ciii i 83
math:mover (in draw MOE)iiiiiii e 84
math:munder (in draw MOAE)oiiiiiiii e 85
math:munderover (in draw MOE)cc.uiiiiiiiii e e e e 86
math:mfrac (in draw MOOE)ccovniiii e e 87
math:msgrt (in draw MOE)uiiiii i e e 88
Math:mroot (in draw MOOE)uiiiiiii e e e e e e 89
math:mtable (in draw MOGE)couniiiii e 90
ArAWROWS .ottt e et e e e e et e e e et et s e e e e et r e e e e et e e e et e e e eatnaaaaae 91
math:mtr (in draw MOOE)ciiiii e e e e 92
(0] = T o) PP 93
math:mtd (in draw MOOE)oiiiiiiii e e e e 94
drawV ertiCalDElIMITErioeeie e 95
AranwV ertiCAlEXTENSE .oeveiiiiii et et e aaann 97
drawHORZONtAI DElIMITEriiieii e e e et e eeeaa e eeees 98
ArawHON ZONTA EXLENSEr ..oiitn e et e e e e e et e e et e e e e eaa s 99
FINOBESISIZE ..oiviiieieii e e e 100
V. FONt MELNCS SLYIESNEEL ...eniiiiii e e e e e e e e et e eaaeees 102
107 10 3| PSP 103
1000 A7/ o L1 3 S 104
L0 AT L3 105
111070 153 o o) USRS 106
111070 153 o o) USRS 107
L 870153oTo) (T = P 108
Lo [=T L P 109
1o [1= T 17 | 110

List of Figures

1. Box for a token element

List of Examples

NOoO o~ WNPE

cBFaCKEL PAITS ... 12
OO PAITS et 12
N (0 TV o= S PP UPPTPPN 12
. CUMY BIaCKEL PAITSeieeiiieiiiii ettt ettt ettt e e et e e e e eaans 12
. mfenced: Original COORoouuiiiiii e et et e e e 49
. mfenced: replacement COUEiiiiiiei et 49
1Tz 0Te s R = 06 = = ST SPPPTTRTPPPPIN 49

Vi

Main stylesheet

Main idea

Each MathML element can be viewed as a box that will be placed on the final SVG document. A box is
represented by a minimum of six attributes that give information about its position and its size.

Attributes of a box
XY Represent the two dimension coordinates of the upper |eft corner of the box.
W DTH, HElI GHT Represent the size of the box.

BASELI| NE Represents the line on which the character will be aligned. Analogies can be made
with the light guide lines on alined sheet.

FONTSI ZE Determines the font size used in this box.

pPMML2SVG works with the XML tree and transforms MathML to SVG in two passes. The first pass,
caled f or mat t i ng mode, anotates each node of the MathML tree with information about position and
size in order to compute a box. These annotations are placed as attributes on the node and belong to a
temporary namespace named t . A namespace is afamily of XML tags and attributes defined in an XML
schemas. The second pass, named dr awi ng mode, interprets annotations in order to draw the boxes on
the SV G result canevas.

Some boxes need additionnal information to render correctly. For example, for the fraction, coordinates
have to be added to place the fraction bar. Each element will describe which information is added to the
tree and how it is handled.

An XSLT template is written for each MathML element and for each pass. It means that to implement
aMahML element, two templates have to be written. One for the f or mat t i ng mode and one for the
dr awi ng mode.

Name
svgMasterUnit

Synopsis

<xsl : param name="svghMasterUnit" select=""px""/>

Name

initSize

Synopsis

<xsl :param name="initSi ze" sel ect="50"/>

Description

This value cannot be changed by any MathML element. It can only be configured by setting it with the
XSLT processor. This value can also be set by an external stylesheet that calls aMathML to SVG trans-
formation. For example, the stylesheet that transforms the equation into picture in the X SL-FO code will
set this value with respect to the current context.

Name

minSize

Synopsis

<xsl : param name="m nSi ze" sel ect="8"/>

Description

This parameter can be set by anst yl e element but it is not yet supported.

10

Name
delimPart

Synopsis
<xsl :variabl e nane="del i nPart"/>

Description

The structure is composed of par t s tagsthat represent a horizontal or avertical operator that have to be
stretched. A part containstwo to four par t children that represent a glyph which composes the operator.
Thepart s element can also have attributes. Here is a description of possible attributes for this tag:

vnane Indicates which operator is stretched vertically using these glyphes to compose it.
hnane Indicates which operator is stretched horizontally using these glyphes to compose it.

hrotate Indicatesthat the glyphes have to be rotated to compose the horizontal operator. For exam-
ple, the over or under bracket is stretched using the same vertical glyphes than a normal
vertical bracket. Therefore, the glyphes have to be rotated to become horizontal. This way
of composing an operator isdue to the unicode encoding that does not contain the horizontal
glyphes to compose an over or under bracket.

ext enser Determinestowardswhich sidethe extenser hasto be added. Thisattributeis used when the
symbol iscomposed by only two glyphes. For example, theright floor operator iscomposed
by a bottom part and an extenser, aright simple arrow is composed by aright arrow header
and an extenser. In the case of the floor operator, the extenser must be added at the t op
of the other part, and for the arrow, the extenser is added on the | ef t of the arrow head.
This attribute can take four values:

top The extenser will be added at thet op of the other part.

bott om The extenser will be added at the bot t omof the other part.

| eft The extenser will be added on the| ef t of the other part.

right The extenser will be added on ther i ght of the other part.
Thelast par t element isalwaysthe extenser, the other parts depend on the number of part element. When
there are four par t elements, the first element is the top or the left part, the second is the bottom or the
right and the third isthe middle. When there arethree par t elements, thefirst element isthetop or theleft
part, and the second isthe bottom or theright. When therearetwo par t elements, thefirst part dependson
theext enser attribute. If extenser ist op, thefirst element isthe bottom, if ext enser isbot t om the

first partisthetop. If ext enser isl ef t ,thefirst elementistheright partandforri ght itistheleft part.

Here are some examples of operators that have to be composed and the corresponding par t s elements
in the structure:

11

delimPart

Example 1. Bracket parts

<parts vname="(" hnane="︵" hrotate="true">
<part >⎛ </ part >
<part >⎝ </ part >
<part >⎜ </ part >

</ parts>

<parts vname=")" hnane="︶" hrotate="true">
<part >⎞ </ part >
<part >⎠ </ part >
<part >⎟ </ part >

</ parts>

Example 2. Floor parts

<parts vname="⌊" extenser="top">
<part >⎣ </ part >
<part >⎢ </ part >

</ parts>

<parts vname="⌋" extenser="top">
<part >⎦ </ part >
<part >⎥ </ part >

</ parts>

Example 3. Arrow parts

<parts hname="→" extenser="left">
<part >→ </ part >
<part >⎯ </ part >
</ parts>
<parts hname="↔ ">
<part >→ </ part >
<part >← </ part >
<part >⎯ </ part >
</ parts>

Example 4. Curly Bracket parts

<parts vname="{{" hnanme="︷" hrotate="true">
<part >⎧ </ part >
<part >⎩ </ part >
<part >⎨ </ part >
<part >⎪ </ part >
</ parts>

12

Name
delimScae

Synopsis
<xsl :variabl e name="del i n5cal e" select="("|"', "/', "\', "#,

Description

It contains an XSLT sequence of characters. These characters will be stretched using the scal e SVG
transformation.

13

Name
thin

Synopsis

<xsl :variabl e name="thi n" sel ect=""'0.0625en"/>

14

Name

medium
Synopsis

<xsl : vari abl e nanme="nedi unt' sel ect=""'0.1875em "/ >

15

Name
thick

Synopsis

<xsl :vari abl e name="t hi ck" sel ect=""'0.3125em "/ >

16

Name

rowElement
Synopsis
<xsl:variabl e name="rowEl ement" select="("'mow, 'md , 'meqrt', 'netyle', 'merror

Description

It containsan XSLT sequence of string that represent alist of MathML elements.

17

Name

getMiddle — Determines the space between the baseline and the middle of the line. This middle is the
horizontal bar of the plus operator.

Synopsis
<xsl :functi on name="func: getM ddl e" >
<xsl : param nanme="fonts"/>
<xsl : param name="variant"/ >
</ xsl :function>

Description

Thisvalue is determined by computing the top edge Y coordinate of the - operator by using the f i nd-
Hei ght function.

See
fi ndHei ght

Parameters

fonts Current font list.

variant Variant for the fonts, thisvariant canbe- 1t al i c,-Bol d, - Bol d- 1t al i ¢c or empty.

Returns

Returns the space between the baseline and the middle of theline.

18

Name

computeSize
Synopsis

<xsl : tenpl at e nanme="conput eSi ze" >

<xsl :param name="initSi ze" tunnel ="yes"/>
<xsl : param name="si zeMul t" tunnel ="yes"/>
<xsl : param name="m nSi ze" tunnel ="yes"/>
<xsl : param name="scri ptl evel " tunnel ="yes"/>

</ xsl :tenpl at e>

Description

Thefont sizeis computed by using the conput eSi zeMul t function that returns a multiplication factor
with respect to the current scri pt Level andsi zeMul t . Theinitial font sizeisdivided by this factor
if the current scri pt Level islower than 0, and is multiplied by it if the current scri pt Level is
greater than 0.

The size is then compared to m nSi ze to return this new font size or the minmum font size. This com-
parison is done to avoid getting afont size that istoo small in order to display correctly an expression.

See
conput eSi zeMul t
Parameters
Parameters from tunnel All the function paramaters are retrieved from the tunnel. These pa-
rameters are described in detail in the root element description.
Returns

Returns the current font size.

19

Name

computeSizeM ult — Compute the factor that will multiply (or divide) the initial size in the computeSize
function.

Synopsis
<xsl:function name="func: conput eSi zeMul t" as="xs: doubl e+">
<xsl : param name="si zeMul t "/ >
<xsl : param name="scri ptl evel "/ >
</ xsl :function>

Description

This recursive function compute si zeMul t exponent scri pt | evel . It is done recursively by multi-
plying si zeMul t by theresult of therecursion. Thescri pt | evel isdecremented by one at each re-
cursion call. The basic case is when this value falls to zero and the function simply returns 1.

Notethat thisfunctionisnever recusively called with the same paramatersasinthefirst call. Itisimpossible
since, thescri ptl evel isawaysdecremented by one.

Parameters
sizeMult Size multiplier represents the factor by wich the initial size has to be multiplied when
the script level changes.
scriptlevel Current valuefor thescri pt | evel . At each recursion, thisvalue is decremented by
one to compute the final factor.
Returns
Returns the factor.

20

Name
unitlnPx

Synopsis
<xsl:tenpl ate name="unitl nPx" as="xs:doubl e+">
<xsl : param name="val ueUnit"/ >
<xsl : param name="font Si ze"/ >

<xsl : param name="default" select="0"/>
</ xsl stenpl ate>
Description
This template simply applies a computation with respect to the value unit. It can handles all these units:

literal, px, em, ex, % and no unit. A spaceliteral iscomputed by using theget SpacelLi t er al template.
For example, by using this template, 3em will be computed 3 * f ont Si ze, 5 will be computed 5 *

def aul t, etc.
See
get Spaceli teral
Parameters
valueUnit The original measure to handle.
fontSize The current font size, this paramater is used to compute relative unit value.
default This parameter is used to compute percentage or ho unit measure.
Returns

Returns the value expressed in the master unit.

21

Name
getSpacel iteral

Synopsis

<xsl :tenpl ate name="get SpaceLiteral ">

<xsl :param nanme="literal "/>

<xsl : param name="ver yver yt hi nmat hspace" tunnel ="yes"/>
<xsl : param name="ver yt hi nmat hspace" tunnel ="yes"/>

<xsl : param name="t hi nmat hspace" tunnel ="yes"/>

<xsl : par am name="nedi ummat hspace" tunnel ="yes"/>

<xsl : param name="t hi ckmat hspace" tunnel ="yes"/>

<xsl : param name="ver yt hi ckmat hspace" tunnel ="yes"/>
<xsl : param name="ver yver yt hi ckmat hspace" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

This template smply browses all possible literal names and returns the corresponding space value. It
supports the following literals: ver yver yt hi nnmat hspace, ver yt hi nmat hspace, t hi nmat h-
space, nedi ummat hspace, t hi cknat hspace, ver yt hi ckmat hspace, veryver yt hi ck-

mat hspace.
Parameters
literal The literal name.
*mathspace Represents the value of the space literals. These values are retrieved from tunnel since
therst yl e element enables to modify them.
Returns

Returns the value expressed by a space literal.

22

Name
chooseAttribute — Selects the best value between the three paramaters.
Synopsis

<xsl : functi on name="func: chooseAttri bute">
<xsl : par am nanme="user"/ >

<xsl : param name="herited"/>

<xsl : param name="defaul t"/ >

</ xsl :function>
Description
This function is used to retrieve style attributes. The value specified by users has the priority and will be

chosen if it is not empty. The second choice is the herited value from a parent if it is not empty. And,
finally, the default one is choosen if al other values are empty.

Parameters
user The value wanted by users. Specified via an attribute to an element.
herited It isthe value herited from a parent.
default It isthe default value from the specification.

Returns

Returns the choosen attribute.

23

Name

getFontNameV ariant — Computes the variant of the font name with respect to the style parameters.
Synopsis

<xsl :functi on name="func: get Font NameVari ant" >
<xsl : param name="nmat hvari ant"/ >

</ xsl :function>
Description

This function computes the variant from the mat hvari ant style attribute. It simply checks if this at-
tribute containsthe stringbol d andthestringi t al i c. Inthefuture, more styles haveto beimplemented.

Parameters

mathvariant Vaueof themat hvari ant attribute from an element.

Returns

Returnsthevariant: - Bol d,-lItalicor-Bold-l1talic.

24

Name
setStyle — Computes a CSS style rule for an element with respect to all style attributes.
Synopsis

<xsl :functi on name="func: set Styl e">
<xsl : param name="nmat hvari ant"/ >
<xsl : par am name="nmat hcol or"/ >

<xsl : par am name="mat hbackgr ound"/ >

</ xsl :function>
Description
This function computes the CSS style attribute. It checksif themat hvar i ant containsthe string bol d

andthestringi t al i ¢ and addsthe correct CSSruleswith respect to thisverification. It also addsaf i | |
rule to change the color of the drawed element width respect to the mat hcol or pamareter.

Parameters
mathvariant Vaueof themat hvari ant attribute from an element.
mathcol or Value of themat hcol or attribute from an element.
mathbackground Value of the mat hbackgr ound attribute from an element.
Returns

Returns the CSS style attribute for an element.

25

Name
stringWidth — Function that simply calls the stringWidth template.

Synopsis
<xsl:functi on nanme="func: stringWdth">
<xsl : param name="str"/>
<xsl : par am name="f ont Nane"/ >
<xsl : param name="variant"/ >
</ xsl :function>

Description

This function was created because, in some cases, it is more simple to call afunction than atemplate. The
st ri ngW dt h template computes the width of a string with respect to the metricsfiles.

See

stringWidth
template.

Parameters

str String to compute the width.
fontName List of fontsthat will be used to render the string.
variant Variant for the font.

Returns

Returnsthe value of the st r i ngW dt h template.

26

Name
stringWidth

Synopsis

<xsl:tenpl ate name="stri ngWdth">
<xsl : param name="str"/>

<xsl : param name="strLen"/>

<xsl :param name="i" select="1"/>

<xsl : param name="si ze" select="0"/>

<xsl : par am name="f ont Name" sel ect="" STl XCeneral'"/>

<xsl| : param nane="variant" select=""'"'"/>

</ xsl :tenpl at e>

Description

It is a recursive function that sums the width of each character that composes the string. A correction
is added to the top and to the bottom of the string. This correction is computed using the bounding box
of, respectively, the first and the last character of the string. These two corrections are compute in the
| eft Beari ngandri ght Beari ng variables.

Note that the recursion will aways end because the index i will finally reached st r Len. Moreovey, it
is never recursively called with the same parameter values as the first call because theindex i isaways
incremented by one.

See
st ri ngW dt h template.
Parameters
str String to compute the width.
strLen Number of character in the string.
[Index of the character that is currently handled.
size This parameter is an accumulator that contains the size (in em) for thefirsti - 1 characters
of the string.
fontName List of fontsthat will be used to render the string.
variant Variant for the font.
Returns

Returns the width of the string in em.

27

Name

math:math — Root el ement of the transformation.

Synopsis

<xsl:tenpl ate match="rmat h: mat h" >

<xsl : param nane="svgMaster Uni t" sel ect ="$svgMasterUnit" tunnel ="yes"/>
<xsl : param name="ini t Si ze" select="$initSize" tunnel ="yes"/>

<xsl : param name="si zeMul t" sel ect="0.71" tunnel ="yes"/>

<xsl : param nane="m nSi ze" sel ect ="$nm nSi ze" tunnel ="yes"/>

<xsl : param nane="svgBorder" select="$initSize div 5" tunnel ="yes"/>
<xsl : param nane="errorMargi n" select="$initSi ze div 10" tunnel ="yes"/>
<xsl : param nane="right Switch" select="$initSi ze div 15" tunnel ="yes"/>
<xsl : par am nane="nunDenSpace" select="$initSize div 5" tunnel ="yes"/>

<xsl : par am nane="over Under Space" select="$initSize div 10" tunnel ="yes"/>

<xsl : param nane="t abl eSpace" select="$initSize div 2" tunnel ="yes"/>
<xsl : param nane="fracW dMarg" select="$initSize div 15" tunnel ="yes"/>
<xsl : param nanme="rt TopSpc" sel ect="$initSize div 6" tunnel ="yes"/>
<xsl : param name="rt Fr nSpcFac" sel ect="0.5" tunnel ="yes"/>

<xsl : param nanme="f ont Nane" sel ect =" $f ont Name" tunnel ="yes"/>

<xsl : param name="scri ptl evel " sel ect="0" tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" select=""true'" tunnel ="yes"/>

<xsl : param name="ver yver yt hi nmat hspace" sel ect=""'0.055556em " tunnel ="yes"/>
<xsl : param name="ver yt hi nmat hspace" select=""'0.111111em " tunnel ="yes"/>

<xsl : param name="t hi nmat hspace" sel ect=""'0.166667em " tunnel ="yes"/>
<xsl : par am name="nedi ummat hspace" sel ect=""'0.222222em " tunnel ="yes"/>
<xsl : param name="t hi ckmat hspace" sel ect=""0.277778em " tunnel ="yes"/>

<xsl : param name="ver yt hi ckmat hspace" sel ect=""'0.333333em " tunnel ="yes"/>
<xsl : param name="ver yver yt hi ckmat hspace" sel ect ="'0.388889em " tunnel ="yes"/>

</ xsl : tenpl at e>

Description

Theroot element isthe starting point of the transformation. Thistemplateiscalled whenanat h elementis
found in the document that is currently transformed. Thistemplate will call the two passes of the transfor-
mation. First, it will retrieve the annotated tree from the f or mat t i ng mode by applying f or mat ti ng
mode template on the entire MathML tree. Then, it will retrieve thetotal width and height of the expression
and writes the header of the SVG file. It will also write metadata information about the baseline. This
information is used to shift the SVG picture when pMML2SVG is calling from an other stylesheet and
when picture must be embedded into a text line. Finally, the root element will call the dr awi ng mode
on the annotated tree to draw all element on the canevas.

All elementsfollow the same scheme. Inf or nat t i ng mode, the font sizeisfirst computed, all attribute
for the element are retrieved. After that, the children elements are computed if necessary, then the box is
created by computing all its attribute and finally the tree node is annotated.

Indr awi ng mode, the X and Y coordinates of the box isfirst computed. Then, the children are drawn if
necessary (by calling their dr awi ng mode) and, finally the elements of the box itself are added on the
canvas (fraction bar, boxes, etc.).

The first element that is called in each transformation is the mat h element. This element is the root of
each MathML equation.

28

math:math

Each templatein thef or mat t i ng mode must take at |east three parameters:

XY Represent the initial upper left corner of the box where the element will be drawn. If the
baselineis not set, Y valueis used to set a new baseline for the current element.

BASELI NE By default, thisvalueiszero. It meansthat no baseline has been created and that the current
element will decidewhereitsbaselinewill be. Inthat case, the element will alignitstop edge
ontheinitial Y value. If this parameter is set, the element has to be aligned on this baseline.

Inthedr awi ng mode, at least two paramaters are required:

xShi ft, yShift Thesevaluesdetermineif the element hasto be shifted to be correctly displayed.
For example, when rendering a fraction. Both numerator and denominator will be
aligned on the baseline by the formatting mode. Therefore, numerator has to be
shifted to the top and denominator to the bottom to find their final correct place.
When drawing, numerator and denominator elements will receive shift values via
these paramaters.

Parameters

Parameters can be retrieved through the tunnel: global parameters or style parameters. A tunnel is away
to forward parameters to al elements through the XML tree without sending them explicitly. It means
that each template implicitly forwards these paramaters to all templates they call. Global parameters are
set by default by the root template. All these values can be changed if the stylesheet is called via another
stylesheet. Some of them can also be changed by setting parameters when executing the transformation
with an XSLT processor. Hereis adescription of al globa paramaters.

Description of global parameters

svgMast er Uni t Determines the default unit that will be used to render the SV G picture.
The default unit is pixe (px).

initSize Determines the initial font size. This value cannot be changed by any
MathML element. It can only be configured by setting it with the XSLT
processor. Thisvalue can also be set by an external stylesheet that callsa
MathML to SV G transformation. For example, the stylesheet that trans-
forms the equation into picture in the XSL-FO code will set this value
with respect to the current context. By default, the value of this param-
eter is 50.

si zeMul t si zeMul t is afactor by which the font size has to be multiplied to
render script element. This parameter workswith scri pt Level . For
example, if the script level is 5, you have to multiply the initial font
size by si zeMul t 5 times. This parameter can be set by anst yl e
element. The default size multiplier is0.71.

scriptlevel Determinesthe number of timesyou will haveto multiply theinitial font
size by si zeMul t to render the current element. This parameter can
be set by anst yl e element. The default script level isO.

di spl ayStyl e Determines the display scheme on some elements, for example, if dis-
play styleisf al se,mover ,munder andnunder over limit of sum-
mation or integral operatorswill be moved from top and bottom to right.
This parameter can be set by anst yl e element. The default script lev-
eistrue.

29

math:math

m nSi ze

svgBor der

rightSwtch

nunmDenSpace

over Under Space

t abl eSpace

fracW dMar g

rt TopSpc

rt Fr nSpcFac

f ont Nane

Mat h space paraneters

Determines the minimal font size. This parameter can be set by a
nst yl e element but it is not yet supported. By default, thisvalueis 8.

Determines the size of the transparent border that surrounds the picture.
By default, this value dependsoni nit Si ze and isi ni t Si ze div
5. Thisvalue will aso set theinitial X and Y coordinates to launch the
transformation.

Determines the size of the space between a base and its subscript or
superscript. This parameter isused in msub, nsup and msubsup ele-
ments. By default, thisvalue dependsoni ni t Si ze andisi ni t Si ze
div 15.

Determines the space between the numerator and the denominator. This
parameter isused in nf r ac element. By default, this value depends on
initSizeandisinitSi zedvb.

Determines the size of the space between a base and its overscript
or underscript. This parameter is used in munder, nover and
nmunder over elements. By default, thisvalue dependsoni ni t Si ze
andisi ni t Si ze div 10.

Determines the size of the space between two cells of atable. This pa-
rameter isused in nt abl e, nt d and nt r elements. By default, this
value dependsoni ni t Si ze andisi ni t Si ze div 2.

Determines the size of the fraction bar that outpasses the numerator or
the denominator. This parameter isused in nf r ac element. By default,
thisvalue dependsoni ni t Si ze andisi nit Si ze div 15.

Determines the size of the space over the base of a root to render the
radical line. Thisparameter isusedinnsqrt and nr oot elements. By
default, thisvalue dependsoni ni t Si ze andisi ni t Si ze div 6.

Determines the size of the space before the base of aroot to render the
radical line. By default thisvalueis 0.5.

Determines the fonts that will be used to render elements. This param-
eter isalist of fonts separated by a comma. By default, the font list is
STI XCGener al , STI XSi zel. The way you can change this parame-
ter isexplained in the user guide.

These parameters are used to determine the value of a space literal.
The space literal can be used when a MathML attribute requires a hori-
zontal measure. The default value for these parameters comes from the
MathML specification. These values can be changed with the nst yl e
element.

Style tunnel parameters are used to implement the heritage of style. Currently, only mat hvari ant,
mat hcol or and mat hbackgr ound areimplemented. Other style attributes are easy to add following

the current scheme.

Description of each style paramaters

mat hvari ant Thisattribute is partially supported and enables usersto put the stylein bold, italic
or both. It also enables to change the font used to render an element. This last
functionnality is not yet supported.

30

math:math

mat hcol or Enables users to change the color of an element. This attribute is fully supported.

mat hbackground Enables users to change the background color of an element. Currently, this at-
tribute does nothing because SV G element does not have background to color. To
fully implement this attribute, we have to draw a colored rectangle that has the
size of the element.

All thesetunnel parameters are forwarded to both formatting and drawing mode. They are available every-
where and can be modified by all elements. However, this modification is only reflected on the children,
it isagood way to implement the inherited style attributes.

31

Formatting mode

32

Name

math: mi|math:mn|math:mtextjmath:ms (in formatting mode) — Formatting a token element.

Synopsis

Descr

<xsl:tenplate match="mat h: m | mat h: | mat h: nt ext | mat h: rs" node="formatting">

<xsl : par am nanme="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param nanme="f ont Nane" tunnel ="yes"/>

<xsl : param nanme="scri ptlevel " tunnel ="yes"/>
<xsl : param nanme="rmat hvari ant" tunnel ="yes"/>
<xsl : par am nanme="mat hcol or" tunnel ="yes"/>

<xsl : par am name="mat hbackgr ound" tunnel ="yes"/>

</ xsl : tenpl at e>
Iption
All these elements are treated the same way with a few exceptions. Therefore, in the implemented

stylesheet, they share the same template, both for formatting and for drawing. These elements are the leaf
of the MathML tree, they do not have any children, they only contain text.

After computing the font size of these elements, the ns | quot e and r quot e attributes are retrieved.
These attributes determine which symbol will be used to surround the text, respectively, on the left and on
theright. After that, the text content of the element isretrieved. | quot e isadded before the first character
and r quot e after thelast oneif the lement isns.

Next, the font variant is computed to retrieve the width and the height of the text. An mi element with
one letter (except infinity symbol) has to be displayed in italic, so the font variant is computed using that
particularities. All the parameters of the box can now be computed: the height is given by font metricsfile,
thewidth is computed using the st r i ngW dt h function and the baselineis set on the bottom of the text
with descender stretching under it. The box also contains an other measure: HEI GHTOVERBASEL | NE
which isthe height of the box from its baseline to its top edge. Here is a figure that represent the box for
atoken element:

Figure 1. Box for atoken element

(X.Y)

_— \
*EC 00d teXtiecH
—WIDTH—>»

The left bearing of the box is computed to shift the character inside the box. If no bearing is computed,
some characters are drawn outside the box. For exemple, the left part of anitalic f goes out of the left side
of the box if no shift value is added by using the left bearing. The right bearing is computed to place the
subscript closer to some characters. In the case of an italic f, if the subscript is placed after the letter box,
it will be too far away from f. If the right bearing is withdrawn from the coordinates of the right side of
the box, the subscript will be drawn closer.

Finally, the tree node is annotated with the box representation and with style (attributes STYLE) infor-
mation about the box. A shift value (SHI FTX) is also added when the token has a |eft bearing. The left

33

math: mijmath:mn|jmath: mtext|
math:ms (in formatting mode)

bearing is a negative value from the left value of the first character bounding box. It occurs, for example,
with anitalicf.

Name

math:mspace (in formatting mode) — Formatting a space.
Synopsis
<xsl:tenpl ate match="mat h: mspace" node="formatti ng">
<xsl : param name="x"/>
<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

</ xsl :tenpl at e>

Description

nspace follows the general scheme. After computing the font size, al attributes are retrieved and com-
puted in pixel. The box representation is computed and the tree is annotated with these values.

Parameters

This element, that represents a space, has three attributes that determine its size:
wi dt h Determines the width of the space.
hei ght Determinesthe size of the box over the baseline.

dept h Determinesthe size of the box under the baseline.

35

Name

math:mo[not(@t:stretchVertical) or @t:stretchVertical != true()] (in formatting mode) — Formatting an
operator.

Synopsis

<xsl:tenplate match="mat h: no[not (@ :stretchVertical) or @:stretchVertical != true
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am name="basel i ne" sel ect="0"/>

<xsl : param nanme="f ont Nane" tunnel ="yes"/>

<xsl : param nanme="scriptlevel" tunnel ="yes"/>

<xsl : param nanme="di spl ayStyl e" tunnel ="yes"/>

<xsl : param nanme="rmat hvari ant" tunnel ="yes"/>

<xsl : par am nanme="mat hcol or" tunnel ="yes"/>

<xsl : par am nanme="mat hbackgr ound" tunnel ="yes"/>

<xsl : param nanme="t hi ckmat hspace" tunnel ="yes"/>

</ xsl : tenpl at e>

See

Variablesdel i nPart and del i nScal e. FunctionchooseEnt ry.

Description

It is one of the most complex elements to render. It has a lot of attributes that determine many differ-
ent ways to display it. The default behaviour of operatorsis contained in adictionary called oper at or
di cti onary. This dictionary, coming from the specification Lis implemented in the file oper a-
tor-dictionary.xm . Ithasbeenimplementedin XML to make access easier using XPath. Modifi-
cations have been done to add useful information for our renderer and to add new characters. Characters
Pri me and Ti nes have been added to the dictionary to facilitate the rendering of these elements. New
attributes have al so been added:

stretchHori zontal If anoperator hasto stretch, this attributes tells our renderer that it will stretch
horizontally.

stretchVerti cal If an operator hasto stretch, this attributes tells our renderer that it will stretch
verticaly.

These two attributes can be both set to true. In this case, the operator has to stretch vertically and horizon-
tally. None of these operators will be stretched in the current version of pMML2SVG.

The formatting mode for ano element has two different behaviours. Thefirst oneisthe normal mode that
annotate the tree like the other elements. The second is used to correct the annotation of the tree when the
operator has to be stretched vertically.

The specification tells us that such an operator should have the size of the biggest non-stretchy element
present in the same row of it. Therefore, when an operator has to be stretched, the bottom and the top
Y of this big element have to be known to compute the final size of the stretched operator. When the
second modeis called, these two values are retrieved by the following template paramaters: upper Y and

Thtt p: // www. wW3. or g/ TR/ 2003/ REC- Mat hML2- 20031021/ appendi xf . ht m

36

math: mo[not(@t:stretchVertical)
or @t:stretchVertical 1=
true()] (in formatting mode)

| ower Y. The way these values are computed and how this second template mode is called is explained
indetail intheal i gnChi | d template.

This template is the normal mode, the correcting mode takes part in another template that is exmplained
further.

First of al, all attribute values of the operator are retrieved. To determine the default behaviour of these
values, the operator dictionary entries for this operator are retrieved. It is done by using XPath and the
docunent function. Thisfunction is used to browse an external file. After that, the best operator dictio-
nary entry is chosen with respect to the number of entries and the f or mattribute. If there is only one
entry, this entry is chosen. If there is more than one entry, a default f or mattribute has to be computed.
Therulesto determineit are:

« If the operator isamember of arow, if there is more than one element in this row (excluding nspace)
and if this operator is the first element in the row (excluding nspace), thef or mattribute ispr ef i x

* If the operator isamember of arow, if there is more than one element in this row (excluding nspace
and if this operator isthe last element in the row (excluding mspace), thef or mattributeispost f i x

» |nall other cases, thef or mattributeisi nfi x.

If thereisan entry with thisf or mattribute value, this entry will be chosen. If not, an entry will be chosen
with preferencetoi nf i x f or mattribute value, then post f i x and finally pr ef i x. Thischoosing rule
isimplemented in the function chooseEnt ry.

After choosing an entry, all other attributes will be finally retrieved. The value will be the user's specified
one, if it exists, then, the value from the operator dictionary and finally a default value from the specifica-
tion. The following attributeis retrieved:

| space, rspace Determine the space around the operator, respectively, on the left and on the
right. Default valueist hi ckmat hspace.

stretchy Determines if an operator has to be stretched. Default value isf al se. If this
valueistrue, stretchHori zontal andstretchVertical variables
areretrieved fromthedictionary, if itispossible. Inall other cases, thesetwo last
valuesaresettof al se. These variables are specific to pMML2SV G renderer.

symmetric Determines if the operator will be stretched symmetrically. The default value
istrue.

maxsi ze, mnsize Determine, respectively, the maximum and minimum size of an operator. These
two attributes are used to control the stretching of the operator. The default
valueis, respectively,i nfinity and1.

| ar geop Determines if the operator is alarge operator such as integral, summation, etc.
The default value isf al se. If di spl aySt yl e vaues, from tunnel, and if
| ar geop aret r ue, then the operator will be rendered with higher font size.
Typically, thescri pt | evel torender this operator will decrease by one.

novablelimts Determines if the limit under or above an operator (such as integral, summa-
tion, etc.) can be moved and be rendered on the left of the operator instead of
under or above. The default value isf al se. This attribute is not yet used in
pMML2SVG.

accent Determines if an operator must behave like an accent. The default value is
f al se. Thisattribute is used to correct the vertical position of accent operator
such as circumflex accent, etc.

37

math: mo[not(@t:stretchVertical)
or @t:stretchVertical 1=
true()] (in formatting mode)

After dl attributes have been retrieved, the font size for the box is computed. Thefont size hasto be bigger
if the |l ar geop attribute ist r ue. Therefore, the scri pt | evel value is decremented by one in this
case. Otherwise, the font size is computed normally.

Some operators have to be replaced by similar glyphes to be retrieved in the font metrics. It is the case
with the under (and over) brackets.

After that, acorrectioniscomputed if the operatorisanaccent . Thiscorrection includesthe computation
of the height of each glyph part that compose the operator if this last has to be stretched. It is done by
retrieving the bouding box of each part of the composed operator. This correction is necessary since the
parts that compose an operator have a higher height than the non-composed operator.

The left and right bearings are also computed the same way as in other tokens. They have the same be-
haviour asin others tokens.

The box size and position is then computed and the computation in pixel of m nsi ze, naxsi ze,
| space andr space isdone.

Finally, the tree node is annotated with box information, stretchy information (STRETCHY, st r et ch-

Hori zontal and stretchVerti cal attributes), m nsi ze and nmaxsi ze (in pixel) that will be
used when the operator will be corrected to stretch, | space andr space (in pixel), EMBELLI SHinfor-
mation, style information, SYMVETRI Cinformation that will be used when the operator will be corrected
to stretch and a shift value (ACCENTSHI FT) that is used to correct the vertical position of an accent.

The EMBELLI SH information is used to know where to add | space and r space. The specification
tells us what an embellished operator is:

Embellished operator definition

e Anno element.

* One of the elements msub, msup, msubsup, munder , nover , munder over,mul ti scri pts,
or nf r ac whose first argument exists and is an embellished operator.

» A row whose arguments consist (in any order) of one embellished operator and zero or more space-
like elements.

Adjustements have to be done when an embellished operator is computed. For example, if an munder
element isan embellished operator, the spacedetermined by | space andr space hasto beplaced around
thismunder element and not around its first no child.

38

Name
math:mo[@t:stretchVertical = true()] (in formatting mode) — Correcting mode for an operator element.

Synopsis

<xsl:tenplate match="math: mo[@: stretchVertical = true()]" node="formatting">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="upper Y" sel ect="0" tunnel ="yes"/>

<xsl : param name="| ower Y" sel ect="0" tunnel ="yes"/>

<xsl : par am name="f ont Nane" tunnel ="yes"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

Some operators have to stretch symmetrically, it depends on the symmet ri ¢ attribute value, it means
than its size above the middle of the expression is equal to its size under this middle. The middle can
be viewed as the position of the minus operator in the expression. Therefore, the first three lines of this
mode (after size computation) are used to determine the height of the delimiter with respect to the biggest
element and thesynmet r i ¢ attributes.

The next computation implements the behaviour of m nsi ze and naxsi ze no attributes. Since the
correcting mode works directly on the annotated tree computed by the normal mode, these two attributes
areretrieved directly fromiit.

Since the parts that compose an operator have a bigger width than the normal operator, the width of the
box has to be corrected too. It is done by retrieving the bounding box of each part. These bounding boxes
are used to compute the new width.

Finally, the box represention is corrected and directly annotated in the tree.

39

Name
chooseEntry — Chooses best entry in Operator Dictionary with respect to specification rules.

Synopsis
<xsl:functi on nanme="func: chooseEntry">
<xsl : param nanme="forns"/ >
<xsl : par am nanme="nodes"/ >
</ xsl :function>

Description

Thisfunction checksif thefirst form fromthef or ns attribute existsin the operator dictionary ent ri es.
If not, the recursion is called with the next form entries.

Note thate recursion is never called with the same parameters as the first function call because an element

is always removed from the f or s seguence. Therefore, the recursion will always end because the size
of f or ns sequence decrease and fall down to 0.

Parameters

forms Sequence of f or mattribute string ordered by preference: user specified, rules from f or mat-
tributes, i nfi x, postfi x, prefi x.

nodes Entriesin the operator dictionary for the current operator.

Returns

Returns the best entry from the operator dictionary entries.

40

Name

math: math|math: mrow|math: merror|math:mphantom|math: menclosejmath:mstyl e (in formatting mode) —
Formatting a box element.

Synopsis

See

<xsl:tenpl ate match="nmat h: mat h| mat h: nt oW nat h: nerror | mat h: nphant on{ nat
<xsl : param nanme="x"/>

<xsl : param nanme="y"/ >

<xsl : param nane="basel i ne" sel ect="0"/>

<xsl : param nane="error Margi n" tunnel ="yes"/>

<xsl : param nanme="si zeMul t" tunnel ="yes"/ >

<xsl : param nane="scri ptl evel " tunnel ="yes"/>

<xsl : param nane="di spl ayStyl e" tunnel ="yes"/>

<xsl : param nane="nmat hvari ant" tunnel ="yes"/>

<xsl : param nane="nmat hcol or" tunnel ="yes"/>

<xsl : par am nanme="nmat hbackgr ound" tunnel ="yes"/>

<xsl : param nane="veryveryt hi nnmat hspace" tunnel ="yes"/>
<xsl : param nane="ver yt hi nnat hspace" tunnel ="yes"/>

<xsl : param nane="t hi nnat hspace" tunnel ="yes"/ >

<xsl : par am nanme="nedi umat hspace" tunnel ="yes"/>

<xsl : param nane="t hi ckmat hspace" tunnel ="yes"/>

<xsl : param nane="ver yt hi cknat hspace" tunnel ="yes"/>
<xsl : param nanme="veryver yt hi ckmat hspace" tunnel ="yes"/>

</ xsl : tenpl at e>

subM ow

Description

All these elements are considered to have the same grouping comportment. Therefore, they are all handled
the same way in the same template with some exception in the code.

First of al, we retrieve the number of children of the element. If this number is zero, an empty box is
created and the tree is annotated with that box. If the number of children is greater than zero, the element
will be treated normally. This distinction is used to handle correctly empty nr owthat is used frequently.

Asusual, all attributes are first retrieved. Thenot at i ons nmencl ose attribute isretrieved and all mul-
tiple spaces are replaced by one space. This attribute is used to determine which element(s) will enclose
the row. It can contain more than one notation. For example, a row can be enclosed by both a circle and
a box. After that, common style attributes are retrieved (there are not al implemented yet) and finally
nmst yl e attributes are retrieved (in reality, only scri pt | evel isretrieved here because it needs more
complex treatment than others). The currently supported attributes are:

scriptlevel Modifies the current level of the font size.
di spl aystyl e Modifies the rendering of some elements.

Space literals (nmedium Modify the size value of space literals.
mat hspace, etc.)

41

h: nencl ose|

math: math|math: mrow|math:merror|
math: mphantom|math: mencl ose]
math:mstyle (in formatting mode)

scriptsizemultiplier Modifiesthesi zeMul t factor.

nst yl e attributes are quite different from other attributes because they have to be transmitted to their
children. Therefore, they are retrieved when the child templates are called and only when the current
element isan st yl e tag. Before formatting all children, new values for X and Y are computed. These
new valueswill help to add more spaces around the children because mencl ose and ner r or need them
to add elements (boxes, circle, root sign, etc.).

After that, children are computed using a template that will align them on the same baseline: subM ow.
It takes four arguments: the new computed X and Y values, the baseline and all the child elements. This
template will also correct the operator that hasto stretch vertically by calling appropriate templates. After
that, the highest right box side of children are retrieved to compute the width of the box. The height and Y
information is computed by retrieving the lowest top side box and the highest bottom side box of children.
A shift value isalso computed if the children are getting out of the canvas. For example, if the baselineis
at 20 and if achild hasaheight of 40, it will go out of the canvas by 20. Therefore, all the children haveto
be shifted to be drawn correctly on the canevas. After that, the baseline for this box is computed by using
the shift value and the lowest baseline of al children.

Finally, the tree is annotated with box information, with the shift value, with value from its operator child
(EMBELLI SH, LSPACE, RSPACE, st ret chVerti cal and ACCENT) if the row is considered as an
embellished operator and NOTATI ON attribute for rencl ose element.

42

Name

subMrow
Synopsis

<xsl :tenpl at e name="subM ow'>

<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>
<xsl : par am nanme="nodes"/ >

</ xsl :tenpl at e>
See

al i gnChi |l d,get StretchyEnbel | i shed

Description

This template is used to align the children of arow on the same baseline. It also calls stretchy correction
on operators that must stretch vertically. The first part of this function is to compute all the children on
the same baseline. To do that, it calls atemplate al i gnChi | d that takes the same parameters plus a
firstChild parameter that is used to determine which element is the first child. This first child will
giveits badine attribute to all other children in order to align al children on the same baseline.

After that, the function corrects the elements that must stretch vertically. All the stretchy embellished
operatorsarefirst retrieved by usingget St r et chyEnbel | i shed. If thereare no stretchy embellished
operator, nothing is done and all the annotated children elements are returned. In the other case, a stretchy
correction may be done.

If astretchy correction has to be done, the lowest and highest Y of all non stretchy children have to be re-
trieved to know thefinal size of the stretchy operators. To retrievethese children, get NonSt r et chyEm

bel | i shed function is used. If there is no element that does not stretch, nothing is done and all the
annotated children elements are returned without any correction. In the other cases, a stretchy correction
is done.

Now that the non-stretchy elements are retrieved, the lowest and highest Y can be computed and the
al i gnChi | d templateis called again to recompute the row with these new parameters. All the elements

have to be recomputed because if an operator has to be stretched, its width will be greater. Therefore, all
the elements that follow it must have anew X coordinate. Finally, al elements are returned.

Parameters

X, Y, baseline Formatting mode required parameters.

nodes Elements to handle in the template.

Returns

Returns all computed alements of the row.

43

Name
alignChild

Synopsis

<xsl:tenpl ate name="alignChild">

<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>
<xsl : par am nanme="nodes"/ >

<xsl : param name="first Node" select="1"/>

</ xsl :tenpl at e>

Description

This template is called from subM ow and is used to compute and align a group of elements on the
same baseline. Typically, these elements will be a part of a row. This template will simply browse all
the elements, compute each of them by calling the appropriate template in formatting mode and give the
baseline of the first non stretchy element to all other elementsin order to align them on the same baseline.
Toknow which elementisthefirst non stretchy one, thef i r st Chi | d parameter isused. The X coordinate
value will be incremented by the size of the current element to compute the next one.

Spaces are sometimes added between two elements. Typically, it will be done between an nsub, msup
or neubsup element and an other element that is not an operator.

Parameters
X, Y, baseline Formatting mode required parameters.
nodes Elements to handle in the template.
firstNode Determinesif the current element isthefirst oneintherow. It will giveitsbaseline
to al other elements.
Returns

Returns all elements aligned on the same baseline.

Name
getStretchyEmbellished

Synopsis
<xsl:tenpl ate name="get StretchyEmbel | i shed" >
<xsl : par am nanme="nodes"/ >

<xsl : param name="node" select=""v'"/>

</ xsl : tenpl at e>

See
i sEnbel | i shed
Description
This function simply browses each node and checks if it is an embellished operator using i sEnbel -
I i shed function. If the function returnst r ue, the node is copied. Otherwise, nothing is done.
Parameters
nodes Elementsto check.
mode Stretching mode: v is to retrieve the operators that stretch vertically (default value), h is for
horizontally, and b is for both vertically and horizontally.
Returns

Returns all the embellished operators that have to stretch vertically, horizontally or both.

45

Name
getNonStretchyEmbellished

Synopsis
<xsl :tenpl ate name="get NonStret chyEnbel | i shed" >
<xsl : par am nanme="nodes"/ >

<xsl : param name="node" select=""v'"/>

</ xsl : tenpl at e>

See
i sEnbel | i shed
Description
This function simply browses each node and checks if it is an embellished operator using i sEnbel -
I i shed function. If the function returnst r ue, nothing is done. Otherwise, the node is copied.
Parameters
nodes Elementsto check.
mode Stretching mode: v is to retrieve the operators that stretch vertically (default value), h is for
horizontally, and b is for both vertically and horizontally.
Returns

Returns all the elements that are not an embellished operator that have to stretch verticaly, horizontally
or both.

46

Name

isEmbellished — Checksif an element isan embellished operator that hasto stretch vertically, horizontally
or both.

Synopsis
<xsl:functi on name="func:isEnbel | i shed" as="xs: bool ean">
<xsl : par am nanme="node"/ >
<xsl : par am nanme="node"/ >
</ xsl : function>

Description

This function implements the rules, from the MathML specification, that determine if an element is an
embellished operator.

See
http://ww. w3. org/ TR/ 2003/ REC- Mat hM_2- 20031021/
chapter3.htm#id.3.2.5.7
Parameters
node Element to check.
mode Stretching mode: v isto retrieve the operators that stretch vertically (default value), h isfor hor-
izontally, and b isfor both vertically and horizontally.
Returns

Returnst r ue if an element is an embellished operator.

47

Name
math:maction (in formatting mode) — Represents an action that reacts at a user sollicitation.
Synopsis

<xsl:tenpl ate match="mat h: macti on" node="formatti ng">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

</ xsl :tenpl at e>
Description
Thiselement is not fully supported yet. To implement a default behaviour, the first child of themact i on

element is computed by using its formatting mode. Therefore, the nact i on node will not be annotated
and will be replaced by its first child node.

48

Name

math:mfenced (in formatting mode) — Represents an expression enclosed by fences and separated by
operators.

Synopsis

<xsl:tenpl ate match="mat h: nfenced" node="formatting">
<xsl : param name="x"/>

<xsl : param name="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

</ xsl :tenpl at e>

See

nf encedConpose

Description

nf enced is an element that can be replaced by a nr ow composed of two or more no elements and its
children. For example

Example 5. mfenced: original code

<nf enced open="[
<m>1</ m>
<m>2</ m>
<m>3</ m>

</ nf enced>

cl ose="]" separators=";|">

can be replaced by:

Example 6. mfenced: replacement code

<nT ow>
<nmo fence="true">[</ no>
<m>1</ m>
<no separator="true">; </ no>
<m>2</ m>
<no separator="true">| </ no>
<m>3</ nm>
<nmo fence="true">] </ no>

</ nr ow>

This example will render like that, with:

Example 7. mfenced: renderer

[1; 2I3]

We can see in this example the three optionnal arguments of nf enced:

open Determines the opening fence of the expression. The default valueis(.

49

math:mfenced (in formatting mode)

cl ose Determines the closing fence of the expression. The default valueis).

separ at ors Determines a sequence of one character separator that will be used to separate each chil-
dren of nf enced. Thedefault valueis,. If there are not enoough separators to separate
each child, the last one is repeated.

Theformatting modewill transform thenf enced element into an mr owas mentionned above, and finally
call the formatting mode of the nt owon it. First, all attributes are retrieved and spacesin separ at or s
atribute are deleted. A nt ownode is created containing the opening and the closing mo and a composition
of children and separators. This composition is done calling the nf encedConpose template. Thistem-
plate takes two arguments: the child nodes and the separ at or s string attribute without space.

Finally, the formatting mode of the newly created nt owis called to compute and annotate it.

50

Name

mfencedCompose

Synopsis
<xsl :tenpl at e name="nf encedConpose" >
<xsl : param name="el enents"/ >

<xsl : par am name="separat ors"/ >
</ xsl stenpl ate>
Description
This recursive template adds the first element and, if it is not the last element, the first separator is added

too into an no element with the separ at or attribute set to t r ue. Then, the template is called again
with elements and separators left. If it lefts only one separator, the recursion will always be called with

that separator.
Parameters
elements Child elements that compose the nf enced.
separators Separators to add between two consecutive elements.
Returns

Returns the new composed row of elements.

51

Name

isPrime — Checks if an element is a prime token.
Synopsis

<xsl : function nanme="func:isPrine" as="xs:bool ean">
<xsl : par am nanme="node"/ >

</ xsl : functi on>

See
htt p: // ww. nabbl e. com REYBA- Render i ng- pri mes¥BA- <nsup><ni >X<- m ><no>- -
Xx2032- <- mp><- msup>- p18157100. ht m

Description
This function check if the node element is a prime. Such an element, as a superscript, has not to be shifted
and script level must remain the same as the base. The characters that return true with this function are
asterisk (x2a), degree (xb0), prime (x2032), double prime (x2033), back prime (x2035) and double back
prime (x2036).

Parameters
node Element to check.

Returns

Returnst r ue if an element is an prime operator.

52

Name

math:msup (in formatting mode) — Formatting a superscript.
Synopsis

<xsl:tenpl ate match="rmat h: msup" nmode="formatti ng">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" tunnel ="yes"/>

<xsl : param name="ri ght Swi tch" tunnel ="yes"/>

<xsl : par am name="f ont Nane" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

nsup element hastwo children: thefirst child is the base and the second is the superscript. After font size
computation, the base and the superscript are computed by calling the formatting mode template on the
first and second child. The superscript gets a X coordinate value that depends on the base's size in order
to place its box on the right of base one. Some general parameters are also modified when the superscript
computationiscalled: thedisplay stylehasto bef al se and the script level hasto beincremented by one.
Using this new value, the size of superscript elements will be smaller than base ones.

After that, someinformationisretrieved for each child: itsheight, Y coordinate of itstop edge and itsheight
over itsbaseline. This datawill be used to compute the final height, baseline and coordinate of the box.

The next four variables are used to compute a shift value for the superscript. By default, this value depends
on the base height, if the base element is lower than 1.2em, the shift value will be 80 percent of the base
height over the baseline. In all other case, the default value will be 90 percent of the base height over the
baseline. If the users as specified ashift value, usingthesuper scri pt shi f t attributes, thisvalue will
be retrieved and used instead of the default one. Then the shift value is corrected with respect to theinitial
position of the superscript and finally the descender of the superscript is added to the final shift value if
it isnot atoken element.

After that, the box representation is computed by using the shift value. The height is computed by taking
the difference between the lowest and the highest Y. The basdline is the baseline of the base.

Fnally, the tree node is annotated and contains, like al other elements, its box representation, and in-
formation that determine if the nsup is an embellished operator (EMBELLI SH, LSPACE, RSPACE,
ACCENT and stretchVertical . Some other information is also added to shift and to place the
superscript: SHI FTY_BASE that will shift the base on the y-axis to place it correctly if neces-
sary, SHI FTY_SUPERSCRI PT that will shift the superscript on the y-axis to its fina position, and
SHI FTX_SUPERSCRI PT that will withdraw the LSPACE value of the superscript if this oneis an em-
bellished operator. Thislast shift on x-axis is done to draw the superscript much closer to its base.

53

Name

math:msub (in formatting mode) — Formatting a subscript.
Synopsis

<xsl:tenpl ate match="rmat h: msub" nmode="formatti ng">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="ri ght Swi tch" tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" tunnel ="yes"/>

<xsl : par am name="f ont Nane" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

nsub element has two children: the first child is the base and the second is the subscript. It works quite
the ssmeway asnsup. Thefirst difference isthe computation of theinitial X coordinate for the subscript
child. Thisvalueiscomputed using the right bearing value of the baseif thislast one hassuch avalue. This
computation is done in order to place the subscript elements closer to the base. Other differences appear
in the computation of subscript shift value. Thisvalue depends on the subscript height and not on the base
height like the superscriptinthe ns up element. Initially, the shift is 50 percent of the subscript height over
the baseline. If the user specified the subscri pt shi ft attribute, it will be retrieved and used instead
of theinitial value. A last correction is added which depends on theinitia positionnement of the subscript.

The tree node is annotated with the same information as ns up. However, only the subscript element gets
shift attributes: SHI FTY_SUBSCRI PT and SHI FTX_SUBSCRI PT that have the same role that in the
nsup element.

Name

math:msubsup (in formatting mode) — Formatting both a superscript and a subscript.

Synopsis

<xsl

<xsl :

<xsl

<xsl :
<xsl :

<xsl

<xsl :
<xsl :

<xsl

:tenpl ate mat ch="rmat h: msubsup” nmode="formatti ng">

par am
. param
par am
par am
. param
par am
par am
. param

nane="x"/>

nane="y"/ >

name="basel i ne" select="0"/>
nane="scriptlevel" tunnel ="yes"/>
nane="di spl ayStyl e" tunnel ="yes"/>
nane="ri ght Switch" tunnel ="yes"/>
nane="over Under Space" tunnel ="yes"/>
nanme="f ont Name" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

nsubsup element has three children: the first child is the base, the second is the subscript and the third
is the superscript. The formatting mode is a composition of the msup and nsub formatting mode. The
superscript has the same computation asin nsup element and subscript asin nsub. The shift values for
the scripts are also the same. A difference appears before computing the box representation, an other shift
value is computed if the superscript covers the subscript. In this case, both superscript and subscript have

to be shifted to remove this covering.

The box representation is then computed and finally, the tree is annotated exactly the same way as for

both msup and nsub elements.

55

Name

math:mover (in formatting mode) — Formatting an overscript.
Synopsis

<xsl:tenpl ate match="rmat h: nrover" node="formatting">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" tunnel ="yes"/>

<xsl : par am name="over Under Space" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

It consists of two children: the base is the first child and the overscript is the second. First, the base is
computed and information about its box is retrieved to achieve further computation. Due to accent
behaviour, adjustement has to be done to compute the overscript. First, theaccent attributeisretrieved.
If no value has been entered, accent isset to f al se. Then, the overscript is computed and, after that, the
accent value is recomputed by using the ACCENT attributes of the overscript if this one is an embellished
operator. If the new accent value differs from the old one, the overscript have to be recomputed.

Thesetwo passes haveto bedone becausetheaccent attribute modifiesthe computation of the overscript
element. If accent istr ue, the overscript has to be closer and the scri pt | evel isnot modified.
On the other hand, when accent isfal se, thescri ptl evel for the overscript element has to be
incremented by one. Therefore, this element will have asmaller font size.

After overscript computation, someinformation about its box isretrieved to computethemover final box.

A shift valueisthen computed to move the overscript away fromthebase. Thisvalueiszeroif theaccent
attributeist r ue, if not, this space shift is taken from the over Under Space global parameter.

The box representation of the mover box isthen computed. The height is the sum of the base height, the
overscript height and the shift value previously computed. The baseline is the base's one and, since the
overscript has to be drawn above the base, then the upper left corner Y coordinate is the Y coordinate of
the overscript top edge.

Finally, the tree node is annotated with the box representation, with the embellished operator attributes
and with shift values:

SHI FTX _BASE This shift value is used to centre the base horizontally with the overscript if
the base is smaller than the overscript.

SHI FTX_OVERSCRI PT This shift value is used to centre the overscript horizontally with the base if
the overscript is smaller than the base.

SHI FTY_BASE Thisvalueis used to place the base at its final place. The overscript hasto be
placed abovethe base. Therefore, the base hasto be shifted down onthey-axis.

SHI FTY_OVERSCRI PT The overscript has to be shifted up on the y-axis to be drawn over the base.

56

Name

math:munder (in formatting mode) — Formatting an underscript.
Synopsis

<xsl:tenpl ate match="mat h: munder" node="formatti ng">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" tunnel ="yes"/>

<xsl : par am name="over Under Space" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

It consists of two children: the first is the base and the second is the underscript. munder is computed
exactly the sameway asthenover element. Only some variable names change, typically, over scri pt
isreplacedby under scri pt . Theshift valuesarea so computed differently becausetheunder scri pt
has to be drawn under the base and not over it.

57

Name

math:munderover (in formatting mode) — Formatting both an underscript and an overscript.
Synopsis

<xsl:tenpl ate match="rmat h: munder over" node="formatting">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="di spl ayStyl e" tunnel ="yes"/>

<xsl : par am name="over Under Space" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

It consists of three children: the base is the first, the underscript is the second and the overscript is the
third. This element is formatted as a combination of both an nover and an nunder element. It first
computes the base, then the underscript and finally the overscript. These two last elements are computed
in two passes to handle correctly the accent attributes. These two passes are done the same way as for
nover element.

The box representation isthen computed. The height isthe sum of each element's height plus the overscript
and the underscript shift value. The width isthe width of the largest element among the base, the overscript
and the underscript. The baseline is the base's one and the upper left corner Y isthe Y coordinate of the
overscript box top edge.

The tree is finally annotated with box representation and with all shift values from both nover and
nmunder elements. The x-axis shift values are computed to center each element.

58

Name

math:mfrac (in formatting mode) — Formatting a fraction.
Synopsis

<xsl:tenplate match="nmat h: nfrac" node="fornmatting">
<xsl : param nanme="x"/>

<xsl : param nanme="y"/ >

<xsl : param nane="basel i ne" sel ect="0"/>

<xsl : param nane="scri ptl evel " tunnel ="yes"/>

<xsl : param nane="di spl ayStyl e" tunnel ="yes"/>

<xsl : param nane="fracW dMarg" tunnel ="yes"/>

<xsl : par am nane="nunDenSpace" tunnel ="yes"/>

<xsl : param nane="f ont Nane" tunnel ="yes"/ >

</ xsl : tenpl at e>

Description

It consists of two children: the first is the numerator and the second is the denominator. First, like al
other elements, the numerator and the denominator are computed using the corresponding formatting mode
template. When calling the template, some parameters have to be maodified to follow the specification.
If the display styleisf al se, the script level has to be incremented by one, and, if itistrue, it hasto
besettof al se.

The width, height and bottom edge Y coordinate of each child is then retrieved to help compute the box
representation of the fraction.

After that, nf r ac attributesisretrieved:

I i net hi ckness Determinesthesize of thefraction bar. By default, thisvalueis 1. After retrieving it,
the line thickness is computed in pixel using theuni t | nPx function. A value with
no unit determines amultiplication of thethin value, for examplethe default valueis
1, without unit, it means that the fraction bar must haveaheightof 1 * t hi n.Itis
why the thin space literal is computed in pixels before computing the final fraction
bar height. This value will be used as default value for the uni t | nPx function.

numal i gn Determines the alignement of the numerator. Values can be center, | eft or
ri ght. Thedefault oneiscent er.

denonal i gn Determines the alignement of the denominator. Values can becent er, | eft or
ri ght. Thedefault oneiscent er.

A shift value is also computed to place the fraction bar, this value is computed from the baseline. The
fraction bar hasto be aligned with aminus sign, in the middle of the text. Therefore, the half size of letter
X isused.

The box representation is then computed. The wi dt h is the maximum between the numerator and the
denominator width plus a margin value both on the right and on the left from the globa parameters
(f racW dMar g). The baseline and the bottom of the box is set.

Finally, the tree is annotated with the box representation and with shift value for the numerator and the
denominator:

59

math:mfrac (in formatting mode)

SHI FTXNUM

SHI FTXDEN

SHI FTYNUM

SHI FTYDEN

Represents an x-axis shifting to place the numerator with respect to the numal i gn at-
tribute.

Represents an x-axis shifting to place the denominator with respect to thedenomal i gn
attribute.

Represents a y-axis shifting to place the numerator above the fraction bar to its final po-
sition.

Represents a y-axis shifting to place the denominator under the fraction bar to its final
position.

Values to place and draw the fraction bar are also added to the annotated tree: FRAC_BAR_Y isthe Y
coordinate of the fraction bar and FRAC_BAR_HEI GHT isitssize.

60

Name

math:msgrt (in formatting mode) — Formatting a square root.
Synopsis

<xsl:tenplate match="mat h: msqrt" node="formatting">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="rt Fr nSpcFac" tunnel ="yes"/>

<xsl : param name="rt TopSpc" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

Its children constitute a row and must be treated using the same mechanisms that for the nt ow. First of
all, the children are computed using the subM owtemplate (like an nt ow). A space is added before the
children to allow drawing of the square root symbol in front of them. The space value is computed using
rt Fr nSpcFac value from the global parameters with respect to the current font size.

The box representation is then computed the same way as in an nt ow element. However, in opposition
to mr ow a space is added on the top of the box to draw the square root line over the child elements. This
valueis coming from the global parameters (rt TopFac).

Finally, the tree is annotated the same way as an nt ow element.

61

Name

math:mroot (in formatting mode) — Formatting a n-ary root.
Synopsis

<xsl:tenplate match="mat h: ntroot" node="formatting">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="scri ptl evel " tunnel ="yes"/>

<xsl : param name="rt Fr nSpcFac" tunnel ="yes"/>

<xsl : param name="rt TopSpc" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

It consists of two children: the first one is the base and the second is the index. First, the base child and
the index child are computed and some information about their boxes is retrieved (size and position) for
further computation. The base initial X coordinate is shifted to the right to add space for drawing the root
symbol. After that, the box representation is computed using child information.

Finally, the tree is annotated with the box, with information about the size and the place of the radica
(RADI CAL_HEI GHT and RADI CAL_Y) and with shift values for the children:

SHI FTY_I NDEX Determines ay-axis shifting to place the index.

SHI FTY_BASE Determines ay-axis shifting to place the base.

62

Name

math:mtable (in formatting mode) — Formatting atable.

Synopsis

See

<xsl:tenpl ate match="mat h: nt abl e" node="formatti ng">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="t abl eSpace" tunnel ="yes"/>

<xsl : par am name="f ont Nane" tunnel ="yes"/>

</ xsl :tenpl at e>

conput eStret ch, stretchRows, nmt abl eW dt h, nt abl eShi ft Yandnt abl eShi ft X.

Description

This element has one or morent r elements as children. It is aso quite complex to render, elements that
compose a column have to be aligned. The elements on aline aso have to be aligned. The table must be
centered on the middle of the mathematic expression. The mainideaisto first compute all the cells on the
same place, as if they were not in atable. For example, in the two by two identity matrix, all O and 1 are
computed like simple nm element. Finaly, shift values are computed to move each cell to itsfinal position.

Therefore, in the formatting mode, thefirst actionisto computeall nt r children by calling the appropriate
template in formatting mode. After that, cells that contain a stretchy operator have to be stretched with
respect to other cellsthat compose the columns and the row. For example, if acolumn containsacell with
aright arrow, given that the arrow has to stretch horizontally, the width of this cell hasto have the value
of the largest cell in the column. To compute the new size of the cells, stretch values are computed using
theconput eSt r et ch function and the cell nodes are modified by using the st r et chRows template.

After that, the box representation is computed. The height is the sum of each row's height plus spaces be-
tween each two lines. The space size value comes from the global paramaters (parameter t abl eSpace).
The table width is computed by calling the nt abl eW dt h template on rows. The baseline is placed at
the middle of the table. And, the upper left corner Y isthe Y coordinate of the table top edge.

Thecol ummal i gn isthen retrieved. This attributes is used to determine how the cellsin acolumn have
to be aligned. The default value is cent er . The shift values for the y-axis are computed by using the
nt abl eShi f t Y template and the shift valuesfor the x-axis are computed by using thent abl eShi ft X
template and col urmal i gn attribute.

Finally, the tree is annotated with the box representation and all shift values.

63

Name

computeStretch

Synopsis

See

Descr

<xsl:tenpl ate name="conputeStretch">
<xsl : param nanme="rows"/ >

<xsl :param name="i" select="1"/>
<xsl :param name="j" select="1"/>

</ xsl :tenpl at e>

i sEnbel | i shed

iption

All cellsarehandled by usingi andj parametersasif the template were two loops. However, given that
XSLT does not provide loop command, the two loops are done by using a recursion scheme.

For each cell, the width isthe largest cell in the column if the element in the current cell hasto be stretched
horizontally, zero in all other cases. The height is the highest cell in the row if the element in the current
cell has to be stretched vertically, zero in all other cases. To check if an element has to be stretched, the
i sEmbel | i shed templateis used.

Parameters

rows Row children from atable.
[Column index of the current element. By default, thisindex is 1.

j Row index of the current element. By default, thisindex is 1.

Returns

As output, the template provides alist of height and width for each cell. Rows are delimited by a semi-
12
34
2.width 2. height ; 3.width 3.height 4.w dth 4. hei ght. Thevalue for width is
zero if the content of the cell has not to be stretched horizontally, if the content has not to be stretched
vertically, the height is zero.

colon in that list. For example, in the following table () the output will be 1. wi dt h 1. hei ght

Name
mtableWidth

Synopsis
<xsl :tenpl at e name="nt abl eW dt h">
<xsl : param nanme="rows"/ >
<xsl :param name="i" select="1"/>
<xsl : param name="w dt h" sel ect="0"/>

<xsl : param name="t abl eSpace" tunnel ="yes"/>

</ xsl :tenpl at e>

Description
For each column, the width of the largest cell in the column and space size between two cells (t a-
bl eSpace global parameter) are added towi dt h. Therecursioniscalled withani incremented by one

and the newly computed width. The final output (when there is no more column to treat) is the value of
the accumulator wi dt h minus one space size between to cell.

Parameters

rows Row children from atable.
[Index of the current column that is handled. By default, thisindex is 1.

width Accumulator that contains the width for a table composed of the (i - 1) th first columns of all
the row children.

Returns

Returns the total width of atable.

65

Name
mtableShiftY

Synopsis
<xsl :tenpl at e nanme="nt abl eShi ftY">
<xsl : param nanme="y"/ >
<xsl : param nanme="rows"/ >

<xsl : param name="t abl eSpace" tunnel ="yes"/>

</ xsl :tenpl at e>

Description
Recursion is done over the rows set. At each step, a shift value is computed for the first row in the set
by using the difference between its final Y position (given in parameter) and its current Y position. The

recursion is called for the rest of the set with an updated Y value. This new valueis computed by using the
height of the first row and size of space between two cells (t abl eSpace global parameter).

Parameters

rows Row children from atable.

y Final top edge Y coordinate of the first row in ther ows parameters.

Returns

As output, it provides a sequence of values that represent the shift for all rows: (1st row shift,
2nd row shift, ..., last row shift).

66

Name

mtableShiftX

Synopsis

<xsl

<xsl : param
<xsl : param
<xsl : param
<xsl : param
<xsl : param
<xsl : param
</ xsl : templ

Description

:tenpl ate name="nt abl eShi ft X">

name="rows"/ >
nanme="col ummal i gn"/ >
name="i" select="1"/>
nane="j" select="1"/>

nane="w dt h" sel ect="0"/>

nane="t abl eSpace" tunnel ="yes"/>

at e>

Therecursion is done the same way asinthe conput eSt r et ch template.

For each cell, the alignement value (cent er , | ef t orri ght) isretrieved from, ordered by preference,
nt d element (retrieved by using XPath on the rows parameter), nt r element (also retrieved by using
XPath on the rows parameter) or nt abl e element (givenin parameter). If no valueis specified by the user
innt d, mt r nor nt abl e, the default alignement value, coming from the nt abl e element, iscent er .

After computing the alignement value, the largest element in the current column and the width of the
current cell areretrieved. These values are then used to compute a shift value with respect to the alignement
value. The width accumulator is used to determine the initial shift value to place the current cell in its
fina column.

Parameters

rows

columnalign

i
j

width

Returns

Row children from atable.

col ummal i gn nt abl e attribute formatted as a sequence.

Column index of the current element. By default, thisindex is 1.

Row index of the current element. By default, thisindex is 1.

Accumulator that containsthe width for atable composed of the (i - 1) thfirst columns

of all therow children.

As output, it provides a sequence of shift value for each cell, the row are separated by a semicolon. It is

done the same way as in the conput eSt r et ch template. For example, in the following table (1 2),

the output will be 1. shi ft Val ue 2. shift Val ue ;

34
3.shi ftVal ue 4. shiftVal ue.

67

Name

math:mtr (in formatting mode) — This element represent arow of atable.
Synopsis

<xsl:tenplate match="math: mr" node="formatti ng">
<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>

<xsl : param name="t abl eSpace" tunnel ="yes"/>

</ xsl :tenpl at e>

See

al i gnRow

Description

nt r element iscomputed like abasic nt ow element. It is composed by one or more nt d children.

After computing the current font size, the cell sthat compose the row are computed by usingtheal i gnRow
template in order to align al the cells on the same baseline. After that, the box representation of the row
is computed. The height is the difference between the highest and the lowest Y coordinate among all the
children. The width isthe sum of all the cells width plus a space between them (using thet abl eSpace
global parameter). The baseline is the lowest baseline among children and upper left corner Y coordinate
isthe lowest Y coordinate among all the children.

Thecol ummal i gn isthen retrieved. The default valueisi nher i t ed if no oneis specified.

Finally, the tree is annotated by using the box representation, the shift value —as it is computed in an
nT ow element—, and with COLUMNALI GN attributes.

68

Name
alignRow

Synopsis

<xsl :tenpl ate nanme="al i gnRow' >

<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am nanme="basel i ne" sel ect="0"/>
<xsl : par am nanme="nodes"/ >

<xsl : param name="first Node" select="0"/>

</ xsl :tenpl at e>

See
al i gnChild
Description
This template has the same behaviour asthe al i gnChi | d template from nr ow. It calls the formatting
mode on the current element and alignsit on thefirst child baseline. Thischildisfound withthef i r st N-
ode parameter.
Parameters
X, Y, baseline Formatting mode required parameters.
nodes Elements handled in the template.
firstNode Determinesif the current element isthefirst oneintherow. It will giveitsbaseline
to all other elements.
Returns

Returns al cells aligned on the same baseline.

69

Name

math:mtd (in formatting mode) — This element represents a cell in arow. It has the same behaviour as
arow element.

Synopsis
<xsl:tenplate match="mat h: ntd" node="formatti ng">
<xsl : param name="x"/>
<xsl : param nanme="y"/ >

<xsl : param nanme="basel i ne" sel ect="0"/>

</ xsl :tenpl at e>

Description

Theformating mode is exaclty the same asthe nt owelement. The only differenceistheattributecol um
nal i gn that hasto beretrieved. The default valueisi nheri t ed if noneis specified.

70

Name
stretchRows

Synopsis
<xsl :tenpl ate name="stret chRows" >
<xsl : param nanme="rows"/ >

<xsl : param name="stret chVal ues"/ >

</ xsl : tenpl at e>

See
conput eStretch

Description
This template smply calls nt r stretch mode template on each row. This new template mode is used to
modify the width and the height of a node. It works directly in the annotated tree and changes the value
of W DTH and HEI GHT annotation.

Parameters
rows Rows of atable to correct.
stretchValues Values computed by the conput eSt r et ch template.

Returns

Returns the corrected rows.

71

Name
math:mtr (in stretch mode) — Correct width and height on arow.

Synopsis

<xsl:tenplate match="math: mtr" node="stretch">
<xsl : param name="stret chVal ues"/ >

</ xsl : tenpl at e>
See

conput eStretch,stretchCol s

Description

First, al itsnt d elements are recomputed by usingthest r et chCol s template. After that, the annotated
tree is recomposed by using these new cells.

Parameters

stretchValues Sequence that represents the new width and height (computed by the com
put eSt r et ch template) for all the cellsin that row.

72

Name
stretchCols

Synopsis
<xsl:tenpl ate name="stretchCol s">
<xsl : param nanme="rows"/ >

<xsl : param name="stret chVal ues"/ >

</ xsl : tenpl at e>

Description
It smply recomputes all nt d elements by calling their stretch mode template with new width and height
as paramaters.
Parameters
rows All cells that will be corrected.
stretchValues New width and height values (in a sequence) for al these cells.

73

Name
math:mtd (in stretch mode) — Correct width and height on a cell.

Synopsis
<xsl:tenpl ate match="mat h: nt d' node="stretch">
<xsl : par am nanme="w dt h"/ >

<xsl : par am nanme="hei ght"/ >

</ xsl : tenpl at e>

See

conput eStretch

Description

Thistemplate simply copies the annotated node and changes W DTH and HEI GHT annotationsif the para-
maters are not equal to zero.

Parameters

width New width for the element.

height New height for the element.

74

Drawing mode

75

Name
math: mi|math:mn|math:mtextjmath:ms (in draw mode) — Drawing a token.
Synopsis

<xsl:tenplate match="mat h: m | mat h: m| mat h: nt ext | mat h: n8" node="dr aw' >
<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

<xsl : par am name="f ont Nane" tunnel ="yes"/>

</ xsl :tenpl at e>
Description
To draw these elementsinthe SVG file, the SV G t ext element isused. The placement of thiselement is

done using the coordinates of the baseline's reference dot. To compute these coordinates, the height over
baseline value is added to the upper left cornerY coordinate.

76

Name

math:mspace (in draw mode) — Drawing a space.
Synopsis
<xsl:tenpl ate match="mat h: nspace" node="draw'/>

Description

Nothing has to be drawn with these element. Therefore, an empty template has been created in the XSLT
styleshest.

7

Name

math:mo (in draw mode) — Drawing an operator.

Synopsis

<xsl:tenpl ate match="mat h: 0" node="draw'>
<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

<xsl : par am name="f ont Nane" tunnel ="yes"/>

</ xsl :tenpl at e>

See

drawHori zontal Del i m ter anddrawVertical Deliniter

Description

First, the final coordinate is computed according to shift and left space values. There are three different
display ways of an operator with respect to the direction of stretch. If the operator hasto stretch vertically,
thedrawMer ti cal Del i nmiter iscalled, if the operator hasto stretch horizontally, the dr awHor i -
zont al Del i mi t er iscalled. In al other cases, the operator is drawed like other token elements (i ,
mm, etc.).

The operator that has to be composed is grouped into a SVG g element with a common style attribute.
This group will simplify the drawing of the stretched operator partsin dr awXxxDel i i t er template.

78

Name

math: math|math: mrow|math:merror|math:mphantom|math:mencloselmath:mstyle (in draw mode) —
Drawing a box.

Synopsis

<xsl:tenpl ate match="rmat h: mat h| mat h: nt ow| mat h: nerr or | mat h: nphant o mat h: nencl ose|
<xsl : param nanme="xShift"/>
<xsl : param nanme="yShift"/>

</ xsl :tenpl at e>

See

dr aweEncl ose

Description

All the children of arow are groupedin aSV G g tag that represents agroup of elements on the canvas. The
style attribute is set on this tag to determine the default style of the box. After writing thistag, the drawing
mode template of each child is called in order to draw them, except if the element isanphant om The
children of anphant omelement are never drawn. These children are shifted on the y-axis if necessary
(attribute SHI FT).

If the element is an ner r or element, a box is drawn around child elements using the SVG r ect tag
that draws arectangle.

If theelementisanmencl ose element, thedr awEncl ose templateiscalled to write decoration around
child elements. Thistemplate takes five parameters: X and Y coordinates, W DTHand HEI GHT of the row
and NOTATI ON attribute that is transformed into a sequence to handle multiple notation.

79

Name

drawEnclose

Synopsis

<xsl :tenpl ate name="drawEncl ose" >

<xsl :
<xsl
<xsl :
<xsl :
<xsl
<xsl :

par am

. param

par am
par am

. param

par am

nane="x"/>

name="y"/>

nane="w dt h"/ >

nane="hei ght"/ >

name="not ati ons"/ >

nane="error Margi n" tunnel ="yes"/>

</ xsl :tenpl at e>

Description

Thistemplate will browse all notations and draw the appropriatel i ne andr ect SV G tag corresponding
to the notation. The circle is drawn using the SVG el | i pse tag to draw an ellipse and the | ongdi v
notation is drawn using the SVG pat h element to draw a curve. This element is used to draw complex

paths on the canvas.
Parameters
X, Y Xand 'Y coordinates of the box that is decorated.
wi dt h Width of the box that is decorated.
hei ght Height of the box that is decorated.
not at i ons Notation that will decorate the box

80

Name

math:msup (in draw mode) — Drawing a superscript.
Synopsis

<xsl:tenpl ate match="mat h: msup" node="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

The drawing of this element is very simple. It calls the drawing mode template of each child by adding
the shift values that have been computed in the formatting mode.

81

Name

math:msub (in draw mode) — Drawing a subscript.
Synopsis

<xsl:tenpl ate match="mat h: mnsub" nmode="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

The drawing mode is exactly similar to the nsup element. Only the name of the shift attributes differ.

82

Name

math:msubsup (in draw mode) — Drawing both a superscript and a subscript.
Synopsis

<xsl:tenpl ate match="mat h: msubsup” nmode="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

The drawing mode simply draws the base, the subscript and the superscript are drawn by calling the draw
mode template of each child. The shift values are added when calling these templates.

83

Name

math:mover (in draw mode) — Drawing an overscript.
Synopsis

<xsl:tenpl ate match="rmat h: nrover" node="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

The drawing mode consists simply of drawing the children of nover by calling their template in drawing
mode. The shift values are added in the call to correctly place each element.

Name

math:munder (in draw mode) — Drawing an underscript.
Synopsis

<xsl:tenpl ate match="mat h: munder" node="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

Like the formatting mode, the drawing mode of nunder element is exactly the same asthe nover one,
except some variable names.

85

Name

math:munderover (in draw mode) — Drawing both an overscript and an underscript.
Synopsis

<xsl:tenpl ate match="rmat h: munder over" node="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

All children are simply drawn by using the corresponding drawing mode template with the corresponding
shift values.

86

Name

math:mfrac (in draw mode) — Drawing afraction.
Synopsis

<xsl:tenpl ate match="mat h: nfrac" node="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>
</ xsl stenpl ate>
Description
The drawing mode is quite smple. It draws each child by calling the drawing mode on the children using

computed shift values from the tree. Finally, it draws a line for the fraction bar using the SVG | i ne
element, Y coordinate and hei ght from the annotated node.

87

Name
math:msgrt (in draw mode) — Drawing a square root.
Synopsis

<xsl:tenplate match="mat h: msqrt" node="draw'>
<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

<xsl : param name="rt Fr nSpcFac" tunnel ="yes"/>

</ xsl :tenpl at e>
Description
Thedrawing mode first draws each child by calling the corresponding template in the drawing mode. After

that, the square root symbol has to be drawn in front of the children and aline is added over them. It is
done by using four SVG | i ne elements.

88

Name
math:mroot (in draw mode) — Drawing a n-ary root.
Synopsis

<xsl:tenpl ate match="mat h: ntroot" node="draw'>
<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

<xsl : param name="rt Fr nSpcFac" tunnel ="yes"/>

</ xsl :tenpl at e>
Description
First, the base and the index are drawn using the appropriate template in the drawing mode. Shift values

are al'so added to Y coordinate to draw them in the correct place. After that, the root symbal is drawn the
sameway asinthensqrt element.

89

Name

math:mtable (in draw mode) — Drawing atable.

Synopsis
<xsl:tenpl ate match="mat h: nt abl e" node="dr aw'>
<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>
</ xsl : tenpl at e>
See

dr awRows

Description

To apply the correct shift values on each cell, the drawing mode calls an other template: dr awRows. This
template will draw each row by using the computed shift values.

90

Name

drawRows
Synopsis

<xsl :tenpl at e name="dr awRows" >
<xsl : param nanme="rows"/ >

<xsl : param nanme="shi ftY"/ >
<xsl : param nanme="shi ft X"/ >
<xsl : param nanme="xShift"/>
<xsl : param nanme="yShift"/>

</ xsl :tenpl at e>
Description
Thistemplate callsnt r drawing mode template on each row by using the correct shift value. The y-axis

shift value is direclty added to the y Shi f t parameters. The x-axis values for arow are transformed into
a segquence and given to the template through the shi f t X parameter.

Parameters
rows Sequence of nt r elements.
shiftX Sequence of x-axis shift values for each cell in each row.
shifty Sequence of y-axis shift value to move rows to their final place.

xShi ft and yShift Required parameters of drawing mode template.

91

Name

math:mtr (in draw mode) — Drawing arow in atable.

Synopsis
<xsl:tenplate match="math: mr" node="draw'>
<xsl : param nanme="xShift"/>
<xsl : param nanme="yShift"/>
<xsl : param nanme="shi ft X"/ >

</ xsl :tenpl at e>
See

dr awCol s

Description

To apply the correct shift values on each cell, the drawing mode calls an other template: dr awCol s. This
template will draw each cell by using the computed shift values.

92

Name
drawCols
Synopsis

<xsl : tenpl at e name="dr awCol s" >
<xsl : param nanme="rows"/ >

<xsl : param nanme="shi ft X"/ >
<xsl : param nanme="xShift"/>
<xsl : param nanme="yShift"/>

</ xsl stenpl ate>
Description

This template calls nt d drawing mode template on each cell by using the correct shift value. The x-axis
shift valueis direclty added to the xShi f t parameters.

Parameters
r ows Sequence of nt d elements.
shiftX Sequence of x-axis shift values for each cell in thisrow.

xShi ft and yShift Required parameters of drawing mode template.

93

Name

math:mtd (in draw mode) — Drawing a cell of atable.
Synopsis

<xsl:tenplate match="mat h: ntd" node="draw'>

<xsl : param nanme="xShift"/>

<xsl : param nanme="yShift"/>

</ xsl : tenpl at e>

Description

This mode behaves exactly like the nt ow drawing mode. It calls the drawing mode of all its children.

94

Name

drawV erticalDelimiter

Synopsis

<xsl:tenpl ate name="drawVertical Delimter">
<xsl : param nanme="delinmter"/>

<xsl : par am name="hei ght "/ >

<xsl : par am nanme="x"/>

<xsl : param nanme="y"/ >

<xsl : param nanme="f ont Si ze"/ >

<xsl : param nanme="variant"/>

<xsl : param nanme="f ont Nane" tunnel ="yes"/>

</ xsl : tenpl at e>

See
fi ndBest Si ze anddr awVer ti cal Ext enser

Description
First of all, a verification must be done to know if the operator has to be stretched. If it does not have to
stretch, it will be simply drawn like a non-stretchy operator. After that, another verification checks if the
operator can be composed, stretched or not. Thisverification isdone using thetwo structures: del i nPar t
and del i nScal e. If the operator cannot be composed or stretched, it will simply be centered by using
aSVGt ext element. If the operator isinthe del i nPart structure, the operator will be composed, if
the operator isinthe del i nScal e structure, the operator will be scaled.

Compose

The number of parts needed to compose the symbolsis retrieved from the structure. This number will be
used to know which type of operator will be composed. After that, the index of part in the structure will
be computed and the bounding box of each part will be retrieved from the metrics. A correction is done
to avoid the small gaps on the canvas. The next line computes the number of extensers that will be added
and the final font size of the operator calling the function f i ndBest Si ze. A new font sizeis computed
in order to have a round number of parts.

After all these computations, the bottom and the top parts of the operator will bedrawnusingaSvVGt ext
element. The top delimiter is only drawn if there are more than two parts or if the ext enser attribute
isbot t om In the same way, the bottom delimiter is only draw if there is more than two parts or if the
ext enser attribute ist op. Now, the extenser has to be drawn and the way to draw them depends on
the number of parts.

If the operator has four parts (like a curly bracket for example), a middle part isthen added using at ext
element and two groups of extenser are drawn around thismiddle part usingdr awVer t i cal Ext enser
function. The extenser is only drawn if the number returned by f i ndBest Si ze isbigger than zero.

If the operator hastwo or three parts, the extenser will be added if the number returned by f i ndBest Si ze
is bigger than zero. If the operator has two parts and if the extensers have to be drawn on the top, the Y
coordinate has to be on the top of the box. In the other cases, it has to be under the top part of the operator.

95

drawVerticalDelimiter

Scale

First,ascal e factor iscomputed and then the operator isdrawninat ext box that istransformed using
theSVGt r ansf or mattributeandascal e transformation. The'Y coordinate hasto be corrected because
thescal e transformation modifies the coordinate system.

Parameters

X, VY Xand 'Y coordinates of the bottom left corner of the operator box.
delimter Operator to stretch.

hei ght Total height of the box that the operator hasto fill.

font Si ze Initia font size of the operator.

vari ant Font variant for the operator.

96

Name

drawV ertical Extenser
Synopsis

<xsl :tenpl ate name="drawerti cal Ext enser">
<xsl : param name="n"/>

<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : par am name="ext enser"/ >

<xsl : par am name="ext enser Si ze"/ >

<xsl : param name="font Si ze"/ >

<xsl : param name="rot ate" select="false()"/>

</ xsl :tenpl at e>

Description

It simply drawsan extenser, then, if n isgreater than one, thefunctioniscalled again with next Y coordinate
and decremented n.

Parameters
n Number of extensers to draw
X X coordinate for extensers
y Y coordinate for the bottom extenser
ext enser Extenser to draw

extenser Si ze Extenser size (in em)
fontSi ze Size of the font to draw the extenser

rotate t r ue if the extenser has to be rotated

97

Name
drawHorizontal Delimiter
Synopsis

<xsl:tenpl ate nanme="drawHori zontal Delimter">
<xsl :param name="delimter"/>

<xsl : par am nanme="w dt h"/ >

<xsl : param name="x"/>

<xsl : param nanme="y"/ >

<xsl : param name="font Si ze"/ >

<xsl : param name="variant"/ >

<xsl : par am name="f ont Nane" tunnel ="yes"/>

</ xsl :tenpl at e>

See

fi ndBest Si ze and dr awHor i zont al Ext enser

Description

The drawHor i zont al Del i mi t er template is similar to the vertical one except in composition of
operator. Some operators have to be composed with avertical part that isrotated. In SVG, therotation is
doneusingthet r ansf or mattributeand ar ot at e transformation. The modification that is done against
thevertical composition is the check of the hr ot at e attributes of thedel i nPar t that indicatesif parts
have to be rotated. And, using the hr ot at e values, the measure of the part that must retrieve the height
if the parts are rotated, or the width of partsif not.

The other modifications concern adding the rotate transformation when the parts are drawn and calling the
drawHor i zont al Ext enser templateinstead of thedr awVer t i cal Ext enser one.

Parameters

X, Y Xand Y coordinates of the bottom left corner of the operator box.
delimter Operator to stretch.

wi dt h Total width of the box that the operator has to fill.

fontSize Initial font size of the operator.

vari ant Font variant for the operator.

98

Name

drawHorizontal Extenser

Synopsis

<xsl

<xsl : param
<xsl : param
<xsl : param
<xsl : param
<xsl : param
<xsl : param
<xsl : param
<xsl : param
</ xsl : templ

Description

:tenpl at e nanme="dr awHori zont al Ext enser" >

name="n"/>

name="x"/>

nane="y"/ >

name="ext enser"/ >

name="ext enser Si ze"/ >

name="font Si ze"/ >

nane="rotate" select="false()"/>
nanme="f ont Name" tunnel ="yes"/>

at e>

Thistemplate is similar to dr awMer t i cal Ext enser except that the Y coordinate remains the same
through the recursive call and X isincremented to the next coordinate at each template call.

Parameters

n

X

y

ext enser

Number of extensersto draw
X coordinate for extensers
Y coordinate for the bottom extenser

Extenser to draw

ext enser Si ze Extenser size (in em)

fontSi ze

rotate

Size of the font to draw the extenser

t r ue if the extenser has to be rotated

99

Name

findBestSize — Finds a round number of extensers that will cover a space with a font size as near as
possible to the initial font size.

Synopsis

<xsl : function name="func: findBest Si ze" as="xs: doubl e+">
<xsl : param nane="hei ght"/ >

<xsl : param nanme="font Si ze"/ >

<xsl : param nanme="m nPart"/ >

<xsl : param nane="partsSi ze"/ >

<xsl : par am nane="ext enser Si ze"/ >

</ xsl :function>
Description

This function follows the following algorithm:

1. If $height <= $partsSize * $fontSizethenreturn(0, $height div $parts-
Si ze)

2. Else

a Compute: $rawRati o = ($hei ght - $partsSize * $fontSize) div ($font-
Si ze * $extenser Size) + $m nPart and$r oundRati o = r ound($r awRat i 0)

b. Compute$rati o:
i. If$mnPart < 3or$roundRatioiseventhen$rati o = $roundRatio
ii. Else
A. If$rawRatio < $roundRatioaors$ratio = $roundRatio - 1
B. Else$ratio = $roundRatio + 1

c. Return($ratio - $mnPart, $height div (($ratio - $mnPart) * $ex-
tenser Si ze + $partsSi ze))

The Step 2.b is used to obtain an even number of extensers when the operator has a middle part. The
number of extensers at the top (or on the left) of the middle part must be equal to the number of extensers
at the bottom (or on the right) of this part.

Parameters
hei ght Total height to cover
fontSi ze Initial font size
partsSi ze Required part size (in em) (all element excepts the extenser)

ext enser Si ze Extenser size (in em)

m nPar t Required number of part

100

findBestSize

Returns

Returns a sequence of two numbers: the first is the number of extensers to add and the second is the new
computed font size.

101

Font metrics stylesheet

Introduction

This stylesheet offers functions to interact with an XML FOP file metrics. Currently, three types of FOP
metrics are supported: WinAnsiEncoding, Typel font and TTF font. The last one is prefered because the

metrics contain more symbol metrics and more precise metrics. WinAnsi Encoding and Typel files only
contain a maximum of 255 metrics.

102

Name

findFont — Finds an existing font metricsfile for afont name with respect to variants (italic, bold, etc.)
Synopsis

<xsl : function name="func: findFont">
<xsl : param nanme="font"/>
<xsl : param name="variant"/ >

</ xsl :function>
Description

Firstly, if a metrics file exists for the current font name and variant, the name of thisfile is returned. If
not, a check is proceeded to simplify the variant.

If thevariantis- Bol d- 1t al i ¢, ametricsfileis searched for the- Bol d andthe- 1t al i ¢ variant. If
one of them exists, the name of this metrics file is returned. Otherwise, a metrics file with no variant is
checked and returned if it exists.

If the variant isonly - Bol d or only -1t al i ¢, acheck for afile with no variant is proceeded. If it
succeeds, the name of this metricsfileis returned.

In all other cases, when no font metrics file can be found, an empty name is returned.

Parameters

font Font name

variant Variant for the font, thisvariant canbe- 1t al i c, - Bol d, - Bol d-1t al i ¢ or empty.
Returns

Returns the name of the metrics file (without extension) or an empty string if no font was found.

103

Name

findWidth — Find the width of a character from alist of fonts. The first font of the list that contains the
character will be used.

Synopsis

<xsl:tenpl ate name="fi ndWdth">

<xsl : par am nanme="nane"/ >

<xsl : param nanme="fonts"/>

<xsl : param name="variant"/ >

<xsl : param name="fontlnit" sel ect="%fonts"/>

</ xsl :tenpl at e>

Description

Firstly, acheck is doneto verify if the character is not an invisible operator such asinvisibletime or apply
function. If it is one, the size 0 is returned. Otherwise, the character is checked among the font list.

Thelist is browsed to find ametricsfile (using f i ndFont function) that contains the character. If such
afile can be found, the width metric from thisfileis returned. Otherwise size 0.8 is returned.

To retrieve awidth from ametric file, the template f i ndW dt hFi | e isused.

Parameters
name Character to check.
fonts Font list that is used to find the character width.
variant Variant for the font, thisvariant canbe- 1t al i c, - Bol d, - Bol d-1t al i ¢ or empty.

<varlistentry>fontlnit

Initial font list that is used to find the character width. Since the font list will be modified through the
recursion. Theinitial list hasto be saved.

</varlistentry>

Returns

Returns the width of the character in em or 0.8em if the character is not found within the font list.

104

Name

findWidthFile — Find the width of a character from afont metricsfile.
Synopsis

<xsl:tenpl ate name="fi ndWdthFile">
<xsl : par am nanme="nane"/ >
<xsl : param name="f ont Name" sel ect=""' STl XCeneral'"/>

</ xsl : tenpl at e>

Description

Firstly, the final font name is computed by adding the extension . xni to the f ont Nane parameter,
and the character code point is retrieved by using the XPath st r i ng-t o- codepoi nt s function. The
metrics file document tree is then retrieved by using the docunent function.

After that, the width attribute is retreived from the metrics document with respect to the font metrics
encoding. If the encoding is Cl D encoding, a glyph start index (gs) and unicode start value (us) are
computed to retrieve the attribute w (which contains the width of the character) fromthe (gi + 1 +

codePoi nt - us)thwx element of the metricsfile. In all other cases (WinAnsiEncoding), the wdt
attribute (which contains the width of the character) from the char element whose itsi dx attribute is
codePoi nt .

Finally, if thiswidth is zero, the width of x is returned instead. If no width was found, -1 is returned and,
in all other cases, the width divided by 1000 is returned.

Parameters

name Character to find.

fontName Name of the font metric file (without extension).

Returns

Returns the width of the character in em or -1 if the character is not found in the font metricsfile.

105

Name

findBbox — Find the bounding box of a character from alist of fonts. Thefirst font of the list containing
the character will be used.

Synopsis
<xsl :functi on name="func: fi ndBbox" as="xs:doubl e+">
<xsl : par am nanme="nane"/ >
<xsl : param nanme="fonts"/>
<xsl : param name="variant"/ >
</ xsl : function>

Description

Thisfunction simply callsthef i ndBbox template. It is used because functions are easier to call in some
cases than atemplate.

See

fi ndBbox
Parameters

name Character to check.

fonts Font list that is used to find the character width.

variant Variant for the font, thisvariant canbe- 1t al i c, - Bol d, - Bol d- 1t al i ¢ or empty.
Returns

Returnsthe bounding box of the characterinemor (0, 0, 0, 0) if thecharacter isnot found withinthe
font list. The bounding box isreturned in asequence of four elements: (xM n, xMax, yM n, yMax).

106

Name

findBbox — Finds the bounding box of acharacter from alist of font. Thefirst font of thelist that contains
the character will be used.

Synopsis

<xsl :tenpl ate nanme="fi ndBbox" as="xs:doubl e+">
<xsl : par am nanme="nane"/ >

<xsl : param nanme="fonts"/>

<xsl : param name="variant"/ >

<xsl : param name="fontlnit" sel ect="%fonts"/>

</ xsl :tenpl at e>

Description

Firstly, acheck is doneto verify if the character is not an invisible operator such asinvisibletime or apply
function. If it isone, the bounding box (0, 0, 0, O0) isreturned. Otherwise, the character is checked
among the font list.

Thelist is browsed to find ametricsfile (using f i ndFont function) that contains the character. If such
a file can be found, the bounding box metrics from this file is returned. Otherwise sequence (0, O,
0, 0) isreturned.

To retrieve abounding box from ametric file, the template f i ndBboxFi | e isused.

Parameters
name Character to check.
fonts Font list that is used to find the character bounding box.
variant Variant for the font, thisvariant canbe- 1t al i c, - Bol d, - Bol d-1t al i ¢ or empty.
fontInit Initial font list that is used to find the character bounding box. Since the font list will be
maodified through the recursion. Theinitia list has to be saved.
Returns

Returnsthe bounding box of the characterinemor (0, 0, 0, 0) if thecharacter isnot found withinthe
font list. The bounding box isreturned in asequence of four elements: (xM n, xMax, yM n, yMax).

107

Name

findBboxFile — Finds the bounding box of a character from afont metricsfile.
Synopsis

<xsl:tenpl ate name="fi ndBboxFil e" as="xs:doubl e+">
<xsl : par am nanme="nane"/ >
<xsl : param name="f ont Name" sel ect=""' STl XCeneral'"/>

</ xsl : tenpl at e>

Description

Firstly, the final font name is computed by adding the extension . xni to the f ont Nane parameter,
and the character code point is retrieved by using the XPath st r i ng-t o- codepoi nt s function. The
metrics file document tree is then retrieved by using the docunent function.

After that, the bounding box attribute is retrieved from the metrics document with respect to the font
metrics encoding. The bounding box can only be retrieved in the CID encoding. Therefore, the glyph start
index (gs) and unicode start value (us) are computed to retrieve the attributes xM n, xMax, yM n and
yMax, fromthe(gi + 1 + codePoi nt - us)thwx element of the metricsfile. With ametricsfile
encoded in WinAnsiEncoding, bounding box (0, 0, 0, 0) isreturned.

If the character cannot be found in the metricsfile, the value -1 is returned.

Parameters

name Character to find.

fontName Name of the font metric file (without extension).

Returns

Returns the bounding box of the character in em or -1 if the character is not found in the font metricsfile.
The bounding box is returned in asequence likethat (xM n, xMax, yM n, yMax)

108

Name

findHeight — Finds height and depth of a string from a list of font by using the bounding box (from
metrics) of each character in the string. The first font of the list containing the character will be used.

Synopsis
<xsl :function name="func: fi ndHei ght" as="xs: doubl e+">
<xsl : param name="str"/>
<xsl : param nanme="fonts"/>

<xsl : param name="variant"/ >

</ xsl : functi on>

Description
Thisfunction simply callsf i ndHei ght Al t template.
See
fi ndHei ght Al' t
Parameters
str String to check.
fonts Font list that is used to find the character width.
variant Variant for the font, thisvariant canbe- 1t al i c, - Bol d, - Bol d- 1t al i ¢c or empty.
Returns

Returns the height and depth of astring in asequence: (hei ght, depth).

109

Name

findHeightAlt — Finds height and depth of a string from alist of font by using the bounding box (from
metrics) of each character in the string. The first font of the list containing the character will be used.

Synopsis

<xsl:tenpl ate name="fi ndHei ght Al t">

<xsl
<xsl :
<xsl :
<xsl
<xsl :
<xsl :
<xsl

. param

par am
par am

. param

par am
par am

. param

nane="
nane="
nane="
nane="
nane="
nane="
nane="

</ xsl :tenpl at e>

See

fi ndBbox

Description

str"/>

strLen"/>

i" select="1"/>
fonts"/>

variant"/>

hei ght" sel ect="0"/>
dept h" select="0"/>

For each character, the bounding box is retrieved and the template is called recursively with an updated
valuefor hei ght andwi dt h. For the height value, the maximum betweeny Max (from the bounding box)
and the hei ght paramater is taken, and for the depth, the minimum between yM n (from the bounding
box) and the dept h parameter is taken.

Parameters

str
strLen
[

fonts
variant
height

depth

Returns

String to check.

Number of charactersin the string.

Index of the character that is currently analysed.

Font list that is used to find the character width.

Variant for the font, thisvariant canbe- 1t al i c, - Bol d, - Bol d- 1t al i ¢ or empty.

Accumulator that saves the highest height for thefirsti characters.

Accumulator that saves the lowest depth for thefirsti characters.

Returns the height and depth of a string in asequence: (hei ght, dept h).

110

