
Conversion of MathML to
SVG via XSLT: pMML2SVG

Developer Documentation

Jérôme Joslet, Université de Liège <jerome.joslet@student.ulg.ac.be>
Justus H Piater

Professor
Université de Liège Faculty of Applied Sciences Depart-
ment of Electrical Engineering and Computer Science

Conversion of MathML to SVG via XSLT: pMML2SVG: Developer Doc-
umentation
by Jérôme Joslet
Justus H Piater
Professor
Université de Liège Faculty of Applied Sciences Department of Electrical Engineering and Computer Science

iii

Table of Contents
I. Main stylesheet ... 7

svgMasterUnit ... 8
initSize ... 9
minSize .. 10
delimPart .. 11
delimScale ... 13
thin .. 14
medium .. 15
thick ... 16
rowElement ... 17
getMiddle .. 18
computeSize .. 19
computeSizeMult .. 20
unitInPx .. 21
getSpaceLiteral ... 22
chooseAttribute .. 23
getFontNameVariant ... 24
setStyle ... 25
stringWidth ... 26
stringWidth ... 27
math:math ... 28

II. Formatting mode .. 32
math:mi|math:mn|math:mtext|math:ms (in formatting mode) ... 33
math:mspace (in formatting mode) ... 35
math:mo[not(@t:stretchVertical) or @t:stretchVertical != true()] (in formatting mode) 36
math:mo[@t:stretchVertical = true()] (in formatting mode) ... 39
chooseEntry ... 40
math:math|math:mrow|math:merror|math:mphantom|math:menclose|math:mstyle (in format-
ting mode) .. 41
subMrow ... 43
alignChild ... 44
getStretchyEmbellished .. 45
getNonStretchyEmbellished .. 46
isEmbellished ... 47
math:maction (in formatting mode) .. 48
math:mfenced (in formatting mode) ... 49
mfencedCompose ... 51
isPrime ... 52
math:msup (in formatting mode) ... 53
math:msub (in formatting mode) ... 54
math:msubsup (in formatting mode) ... 55
math:mover (in formatting mode) .. 56
math:munder (in formatting mode) .. 57
math:munderover (in formatting mode) ... 58
math:mfrac (in formatting mode) ... 59
math:msqrt (in formatting mode) ... 61
math:mroot (in formatting mode) ... 62
math:mtable (in formatting mode) .. 63
computeStretch ... 64
mtableWidth .. 65
mtableShiftY ... 66

pMML2SVG

iv

mtableShiftX ... 67
math:mtr (in formatting mode) .. 68
alignRow .. 69
math:mtd (in formatting mode) ... 70
stretchRows ... 71
math:mtr (in stretch mode) ... 72
stretchCols .. 73
math:mtd (in stretch mode) .. 74

III. Drawing mode .. 75
math:mi|math:mn|math:mtext|math:ms (in draw mode) ... 76
math:mspace (in draw mode) .. 77
math:mo (in draw mode) .. 78
math:math|math:mrow|math:merror|math:mphantom|math:menclose|math:mstyle (in draw
mode) ... 79
drawEnclose .. 80
math:msup (in draw mode) ... 81
math:msub (in draw mode) ... 82
math:msubsup (in draw mode) .. 83
math:mover (in draw mode) ... 84
math:munder (in draw mode) .. 85
math:munderover (in draw mode) .. 86
math:mfrac (in draw mode) .. 87
math:msqrt (in draw mode) .. 88
math:mroot (in draw mode) .. 89
math:mtable (in draw mode) ... 90
drawRows ... 91
math:mtr (in draw mode) ... 92
drawCols ... 93
math:mtd (in draw mode) ... 94
drawVerticalDelimiter ... 95
drawVerticalExtenser ... 97
drawHorizontalDelimiter .. 98
drawHorizontalExtenser ... 99
findBestSize ... 100

IV. Font metrics stylesheet ... 102
findFont .. 103
findWidth .. 104
findWidthFile ... 105
findBbox ... 106
findBbox ... 107
findBboxFile .. 108
findHeight ... 109
findHeightAlt ... 110

v

List of Figures
1. Box for a token element ... 33

vi

List of Examples
1. Bracket parts .. 12
2. Floor parts ... 12
3. Arrow parts ... 12
4. Curly Bracket parts ... 12
5. mfenced: original code ... 49
6. mfenced: replacement code ... 49
7. mfenced: renderer ... 49

7

Main stylesheet

Main idea
Each MathML element can be viewed as a box that will be placed on the final SVG document. A box is
represented by a minimum of six attributes that give information about its position and its size.

Attributes of a box

X, Y Represent the two dimension coordinates of the upper left corner of the box.

WIDTH, HEIGHT Represent the size of the box.

BASELINE Represents the line on which the character will be aligned. Analogies can be made
with the light guide lines on a lined sheet.

FONTSIZE Determines the font size used in this box.

pMML2SVG works with the XML tree and transforms MathML to SVG in two passes. The first pass,
called formatting mode, anotates each node of the MathML tree with information about position and
size in order to compute a box. These annotations are placed as attributes on the node and belong to a
temporary namespace named t. A namespace is a family of XML tags and attributes defined in an XML
schemas. The second pass, named drawing mode, interprets annotations in order to draw the boxes on
the SVG result canevas.

Some boxes need additionnal information to render correctly. For example, for the fraction, coordinates
have to be added to place the fraction bar. Each element will describe which information is added to the
tree and how it is handled.

An XSLT template is written for each MathML element and for each pass. It means that to implement
a MathML element, two templates have to be written. One for the formatting mode and one for the
drawing mode.

8

Name
svgMasterUnit

Synopsis

<xsl:param name="svgMasterUnit" select="'px'"/>

9

Name
initSize

Synopsis

<xsl:param name="initSize" select="50"/>

Description
This value cannot be changed by any MathML element. It can only be configured by setting it with the
XSLT processor. This value can also be set by an external stylesheet that calls a MathML to SVG trans-
formation. For example, the stylesheet that transforms the equation into picture in the XSL-FO code will
set this value with respect to the current context.

10

Name
minSize

Synopsis

<xsl:param name="minSize" select="8"/>

Description
This parameter can be set by a mstyle element but it is not yet supported.

11

Name
delimPart

Synopsis

<xsl:variable name="delimPart"/>

Description

The structure is composed of parts tags that represent a horizontal or a vertical operator that have to be
stretched. A part contains two to four part children that represent a glyph which composes the operator.
The parts element can also have attributes. Here is a description of possible attributes for this tag:

vname Indicates which operator is stretched vertically using these glyphes to compose it.

hname Indicates which operator is stretched horizontally using these glyphes to compose it.

hrotate Indicates that the glyphes have to be rotated to compose the horizontal operator. For exam-
ple, the over or under bracket is stretched using the same vertical glyphes than a normal
vertical bracket. Therefore, the glyphes have to be rotated to become horizontal. This way
of composing an operator is due to the unicode encoding that does not contain the horizontal
glyphes to compose an over or under bracket.

extenser Determines towards which side the extenser has to be added. This attribute is used when the
symbol is composed by only two glyphes. For example, the right floor operator is composed
by a bottom part and an extenser, a right simple arrow is composed by a right arrow header
and an extenser. In the case of the floor operator, the extenser must be added at the top
of the other part, and for the arrow, the extenser is added on the left of the arrow head.
This attribute can take four values:

top The extenser will be added at the top of the other part.

bottom The extenser will be added at the bottom of the other part.

left The extenser will be added on the left of the other part.

right The extenser will be added on the right of the other part.

The last part element is always the extenser, the other parts depend on the number of part element. When
there are four part elements, the first element is the top or the left part, the second is the bottom or the
right and the third is the middle. When there are three part elements, the first element is the top or the left
part, and the second is the bottom or the right. When there are two part elements, the first part depends on
the extenser attribute. If extenser is top, the first element is the bottom, if extenser is bottom, the
first part is the top. If extenser is left, the first element is the right part and for right it is the left part.

Here are some examples of operators that have to be composed and the corresponding parts elements
in the structure:

delimPart

12

Example 1. Bracket parts

<parts vname="(" hname="︵" hrotate="true">
 <part>⎛</part>
 <part>⎝</part>
 <part>⎜</part>
</parts>
<parts vname=")" hname="︶" hrotate="true">
 <part>⎞</part>
 <part>⎠</part>
 <part>⎟</part>
</parts>

Example 2. Floor parts

<parts vname="⌊" extenser="top">
 <part>⎣</part>
 <part>⎢</part>
</parts>
<parts vname="⌋" extenser="top">
 <part>⎦</part>
 <part>⎥</part>
</parts>

Example 3. Arrow parts

<parts hname="→" extenser="left">
 <part>→</part>
 <part>⎯</part>
</parts>
<parts hname="↔">
 <part>→</part>
 <part>←</part>
 <part>⎯</part>
</parts>

Example 4. Curly Bracket parts

<parts vname="{{" hname="︷" hrotate="true">
 <part>⎧</part>
 <part>⎩</part>
 <part>⎨</part>
 <part>⎪</part>
</parts>

13

Name
delimScale

Synopsis
<xsl:variable name="delimScale" select="('|', '/', '\', '#', '#', '#', '#', '¯', '#', '#', '#')"/>

Description
It contains an XSLT sequence of characters. These characters will be stretched using the scale SVG
transformation.

14

Name
thin

Synopsis
<xsl:variable name="thin" select="'0.0625em'"/>

15

Name
medium

Synopsis
<xsl:variable name="medium" select="'0.1875em'"/>

16

Name
thick

Synopsis
<xsl:variable name="thick" select="'0.3125em'"/>

17

Name
rowElement

Synopsis
<xsl:variable name="rowElement" select="('mrow', 'mtd', 'msqrt', 'mstyle', 'merror', 'menclose', 'mpadded', 'mphantom', 'math')"/>

Description
It contains an XSLT sequence of string that represent a list of MathML elements.

18

Name
getMiddle — Determines the space between the baseline and the middle of the line. This middle is the
horizontal bar of the plus operator.

Synopsis
<xsl:function name="func:getMiddle">
<xsl:param name="fonts"/>
<xsl:param name="variant"/>
 ...
</xsl:function>

Description
This value is determined by computing the top edge Y coordinate of the - operator by using the find-
Height function.

See
findHeight

Parameters
fonts Current font list.

variant Variant for the fonts, this variant can be -Italic, -Bold, -Bold-Italic or empty.

Returns
Returns the space between the baseline and the middle of the line.

19

Name
computeSize

Synopsis
<xsl:template name="computeSize">
<xsl:param name="initSize" tunnel="yes"/>
<xsl:param name="sizeMult" tunnel="yes"/>
<xsl:param name="minSize" tunnel="yes"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
 ...
</xsl:template>

Description
The font size is computed by using the computeSizeMult function that returns a multiplication factor
with respect to the current scriptLevel and sizeMult. The initial font size is divided by this factor
if the current scriptLevel is lower than 0, and is multiplied by it if the current scriptLevel is
greater than 0.

The size is then compared to minSize to return this new font size or the minmum font size. This com-
parison is done to avoid getting a font size that is too small in order to display correctly an expression.

See
computeSizeMult

Parameters
Parameters from tunnel All the function paramaters are retrieved from the tunnel. These pa-

rameters are described in detail in the root element description.

Returns
Returns the current font size.

20

Name
computeSizeMult — Compute the factor that will multiply (or divide) the initial size in the computeSize
function.

Synopsis
<xsl:function name="func:computeSizeMult" as="xs:double+">
<xsl:param name="sizeMult"/>
<xsl:param name="scriptlevel"/>
 ...
</xsl:function>

Description
This recursive function compute sizeMult exponent scriptlevel. It is done recursively by multi-
plying sizeMult by the result of the recursion. The scriptlevel is decremented by one at each re-
cursion call. The basic case is when this value falls to zero and the function simply returns 1.

Note that this function is never recusively called with the same paramaters as in the first call. It is impossible
since, the scriptlevel is always decremented by one.

Parameters
sizeMult Size multiplier represents the factor by wich the initial size has to be multiplied when

the script level changes.

scriptlevel Current value for the scriptlevel. At each recursion, this value is decremented by
one to compute the final factor.

Returns
Returns the factor.

21

Name
unitInPx

Synopsis
<xsl:template name="unitInPx" as="xs:double+">
<xsl:param name="valueUnit"/>
<xsl:param name="fontSize"/>
<xsl:param name="default" select="0"/>
 ...
</xsl:template>

Description
This template simply applies a computation with respect to the value unit. It can handles all these units:
literal, px, em, ex, % and no unit. A space literal is computed by using the getSpaceLiteral template.
For example, by using this template, 3em will be computed 3 * fontSize, 5 will be computed 5 *
default, etc.

See
getSpaceLiteral

Parameters
valueUnit The original measure to handle.

fontSize The current font size, this paramater is used to compute relative unit value.

default This parameter is used to compute percentage or no unit measure.

Returns
Returns the value expressed in the master unit.

22

Name
getSpaceLiteral

Synopsis
<xsl:template name="getSpaceLiteral">
<xsl:param name="literal"/>
<xsl:param name="veryverythinmathspace" tunnel="yes"/>
<xsl:param name="verythinmathspace" tunnel="yes"/>
<xsl:param name="thinmathspace" tunnel="yes"/>
<xsl:param name="mediummathspace" tunnel="yes"/>
<xsl:param name="thickmathspace" tunnel="yes"/>
<xsl:param name="verythickmathspace" tunnel="yes"/>
<xsl:param name="veryverythickmathspace" tunnel="yes"/>
 ...
</xsl:template>

Description
This template simply browses all possible literal names and returns the corresponding space value. It
supports the following literals: veryverythinmathspace, verythinmathspace, thinmath-
space, mediummathspace, thickmathspace, verythickmathspace, veryverythick-
mathspace.

Parameters
literal The literal name.

*mathspace Represents the value of the space literals. These values are retrieved from tunnel since
the mstyle element enables to modify them.

Returns
Returns the value expressed by a space literal.

23

Name
chooseAttribute — Selects the best value between the three paramaters.

Synopsis
<xsl:function name="func:chooseAttribute">
<xsl:param name="user"/>
<xsl:param name="herited"/>
<xsl:param name="default"/>
 ...
</xsl:function>

Description
This function is used to retrieve style attributes. The value specified by users has the priority and will be
chosen if it is not empty. The second choice is the herited value from a parent if it is not empty. And,
finally, the default one is choosen if all other values are empty.

Parameters
user The value wanted by users. Specified via an attribute to an element.

herited It is the value herited from a parent.

default It is the default value from the specification.

Returns
Returns the choosen attribute.

24

Name
getFontNameVariant — Computes the variant of the font name with respect to the style parameters.

Synopsis
<xsl:function name="func:getFontNameVariant">
<xsl:param name="mathvariant"/>
 ...
</xsl:function>

Description
This function computes the variant from the mathvariant style attribute. It simply checks if this at-
tribute contains the string bold and the string italic. In the future, more styles have to be implemented.

Parameters
mathvariant Value of the mathvariant attribute from an element.

Returns
Returns the variant: -Bold, -Italic or -Bold-Italic.

25

Name
setStyle — Computes a CSS style rule for an element with respect to all style attributes.

Synopsis
<xsl:function name="func:setStyle">
<xsl:param name="mathvariant"/>
<xsl:param name="mathcolor"/>
<xsl:param name="mathbackground"/>
 ...
</xsl:function>

Description
This function computes the CSS style attribute. It checks if the mathvariant contains the string bold
and the string italic and adds the correct CSS rules with respect to this verification. It also adds a fill
rule to change the color of the drawed element width respect to the mathcolor pamareter.

Parameters
mathvariant Value of the mathvariant attribute from an element.

mathcolor Value of the mathcolor attribute from an element.

mathbackground Value of the mathbackground attribute from an element.

Returns
Returns the CSS style attribute for an element.

26

Name
stringWidth — Function that simply calls the stringWidth template.

Synopsis
<xsl:function name="func:stringWidth">
<xsl:param name="str"/>
<xsl:param name="fontName"/>
<xsl:param name="variant"/>
 ...
</xsl:function>

Description
This function was created because, in some cases, it is more simple to call a function than a template. The
stringWidth template computes the width of a string with respect to the metrics files.

See
stringWidth
template.

Parameters
str String to compute the width.

fontName List of fonts that will be used to render the string.

variant Variant for the font.

Returns
Returns the value of the stringWidth template.

27

Name
stringWidth

Synopsis
<xsl:template name="stringWidth">
<xsl:param name="str"/>
<xsl:param name="strLen"/>
<xsl:param name="i" select="1"/>
<xsl:param name="size" select="0"/>
<xsl:param name="fontName" select="'STIXGeneral'"/>
<xsl:param name="variant" select="''"/>
 ...
</xsl:template>

Description
It is a recursive function that sums the width of each character that composes the string. A correction
is added to the top and to the bottom of the string. This correction is computed using the bounding box
of, respectively, the first and the last character of the string. These two corrections are compute in the
leftBearing and rightBearing variables.

Note that the recursion will always end because the index i will finally reached strLen. Moreover, it
is never recursively called with the same parameter values as the first call because the index i is always
incremented by one.

See
stringWidth template.

Parameters
str String to compute the width.

strLen Number of character in the string.

i Index of the character that is currently handled.

size This parameter is an accumulator that contains the size (in em) for the first i-1 characters
of the string.

fontName List of fonts that will be used to render the string.

variant Variant for the font.

Returns
Returns the width of the string in em.

28

Name
math:math — Root element of the transformation.

Synopsis
<xsl:template match="math:math">
<xsl:param name="svgMasterUnit" select="$svgMasterUnit" tunnel="yes"/>
<xsl:param name="initSize" select="$initSize" tunnel="yes"/>
<xsl:param name="sizeMult" select="0.71" tunnel="yes"/>
<xsl:param name="minSize" select="$minSize" tunnel="yes"/>
<xsl:param name="svgBorder" select="$initSize div 5" tunnel="yes"/>
<xsl:param name="errorMargin" select="$initSize div 10" tunnel="yes"/>
<xsl:param name="rightSwitch" select="$initSize div 15" tunnel="yes"/>
<xsl:param name="numDenSpace" select="$initSize div 5" tunnel="yes"/>
<xsl:param name="overUnderSpace" select="$initSize div 10" tunnel="yes"/>
<xsl:param name="tableSpace" select="$initSize div 2" tunnel="yes"/>
<xsl:param name="fracWidMarg" select="$initSize div 15" tunnel="yes"/>
<xsl:param name="rtTopSpc" select="$initSize div 6" tunnel="yes"/>
<xsl:param name="rtFrnSpcFac" select="0.5" tunnel="yes"/>
<xsl:param name="fontName" select="$fontName" tunnel="yes"/>
<xsl:param name="scriptlevel" select="0" tunnel="yes"/>
<xsl:param name="displayStyle" select="'true'" tunnel="yes"/>
<xsl:param name="veryverythinmathspace" select="'0.055556em'" tunnel="yes"/>
<xsl:param name="verythinmathspace" select="'0.111111em'" tunnel="yes"/>
<xsl:param name="thinmathspace" select="'0.166667em'" tunnel="yes"/>
<xsl:param name="mediummathspace" select="'0.222222em'" tunnel="yes"/>
<xsl:param name="thickmathspace" select="'0.277778em'" tunnel="yes"/>
<xsl:param name="verythickmathspace" select="'0.333333em'" tunnel="yes"/>
<xsl:param name="veryverythickmathspace" select="'0.388889em'" tunnel="yes"/>
 ...
</xsl:template>

Description
The root element is the starting point of the transformation. This template is called when a math element is
found in the document that is currently transformed. This template will call the two passes of the transfor-
mation. First, it will retrieve the annotated tree from the formatting mode by applying formatting
mode template on the entire MathML tree. Then, it will retrieve the total width and height of the expression
and writes the header of the SVG file. It will also write metadata information about the baseline. This
information is used to shift the SVG picture when pMML2SVG is calling from an other stylesheet and
when picture must be embedded into a text line. Finally, the root element will call the drawing mode
on the annotated tree to draw all element on the canevas.

All elements follow the same scheme. In formatting mode, the font size is first computed, all attribute
for the element are retrieved. After that, the children elements are computed if necessary, then the box is
created by computing all its attribute and finally the tree node is annotated.

In drawing mode, the X and Y coordinates of the box is first computed. Then, the children are drawn if
necessary (by calling their drawing mode) and, finally the elements of the box itself are added on the
canvas (fraction bar, boxes, etc.).

The first element that is called in each transformation is the math element. This element is the root of
each MathML equation.

math:math

29

Each template in the formatting mode must take at least three parameters:

X, Y Represent the initial upper left corner of the box where the element will be drawn. If the
baseline is not set, Y value is used to set a new baseline for the current element.

BASELINE By default, this value is zero. It means that no baseline has been created and that the current
element will decide where its baseline will be. In that case, the element will align its top edge
on the initial Y value. If this parameter is set, the element has to be aligned on this baseline.

In the drawing mode, at least two paramaters are required:

xShift, yShift These values determine if the element has to be shifted to be correctly displayed.
For example, when rendering a fraction. Both numerator and denominator will be
aligned on the baseline by the formatting mode. Therefore, numerator has to be
shifted to the top and denominator to the bottom to find their final correct place.
When drawing, numerator and denominator elements will receive shift values via
these paramaters.

Parameters
Parameters can be retrieved through the tunnel: global parameters or style parameters. A tunnel is a way
to forward parameters to all elements through the XML tree without sending them explicitly. It means
that each template implicitly forwards these paramaters to all templates they call. Global parameters are
set by default by the root template. All these values can be changed if the stylesheet is called via another
stylesheet. Some of them can also be changed by setting parameters when executing the transformation
with an XSLT processor. Here is a description of all global paramaters.

Description of global parameters

svgMasterUnit Determines the default unit that will be used to render the SVG picture.
The default unit is pixel (px).

initSize Determines the initial font size. This value cannot be changed by any
MathML element. It can only be configured by setting it with the XSLT
processor. This value can also be set by an external stylesheet that calls a
MathML to SVG transformation. For example, the stylesheet that trans-
forms the equation into picture in the XSL-FO code will set this value
with respect to the current context. By default, the value of this param-
eter is 50.

sizeMult sizeMult is a factor by which the font size has to be multiplied to
render script element. This parameter works with scriptLevel. For
example, if the script level is 5, you have to multiply the initial font
size by sizeMult 5 times. This parameter can be set by a mstyle
element. The default size multiplier is 0.71.

scriptlevel Determines the number of times you will have to multiply the initial font
size by sizeMult to render the current element. This parameter can
be set by a mstyle element. The default script level is 0.

displayStyle Determines the display scheme on some elements, for example, if dis-
play style is false, mover, munder and munderover limit of sum-
mation or integral operators will be moved from top and bottom to right.
This parameter can be set by a mstyle element. The default script lev-
el is true.

math:math

30

minSize Determines the minimal font size. This parameter can be set by a
mstyle element but it is not yet supported. By default, this value is 8.

svgBorder Determines the size of the transparent border that surrounds the picture.
By default, this value depends on initSize and is initSize div
5. This value will also set the initial X and Y coordinates to launch the
transformation.

rightSwitch Determines the size of the space between a base and its subscript or
superscript. This parameter is used in msub, msup and msubsup ele-
ments. By default, this value depends on initSize and is initSize
div 15.

numDenSpace Determines the space between the numerator and the denominator. This
parameter is used in mfrac element. By default, this value depends on
initSize and is initSize div 5.

overUnderSpace Determines the size of the space between a base and its overscript
or underscript. This parameter is used in munder, mover and
munderover elements. By default, this value depends on initSize
and is initSize div 10.

tableSpace Determines the size of the space between two cells of a table. This pa-
rameter is used in mtable, mtd and mtr elements. By default, this
value depends on initSize and is initSize div 2.

fracWidMarg Determines the size of the fraction bar that outpasses the numerator or
the denominator. This parameter is used in mfrac element. By default,
this value depends on initSize and is initSize div 15.

rtTopSpc Determines the size of the space over the base of a root to render the
radical line. This parameter is used in msqrt and mroot elements. By
default, this value depends on initSize and is initSize div 6.

rtFrnSpcFac Determines the size of the space before the base of a root to render the
radical line. By default this value is 0.5.

fontName Determines the fonts that will be used to render elements. This param-
eter is a list of fonts separated by a comma. By default, the font list is
STIXGeneral,STIXSize1. The way you can change this parame-
ter is explained in the user guide.

Math space parameters These parameters are used to determine the value of a space literal.
The space literal can be used when a MathML attribute requires a hori-
zontal measure. The default value for these parameters comes from the
MathML specification. These values can be changed with the mstyle
element.

Style tunnel parameters are used to implement the heritage of style. Currently, only mathvariant,
mathcolor and mathbackground are implemented. Other style attributes are easy to add following
the current scheme.

Description of each style paramaters

mathvariant This attribute is partially supported and enables users to put the style in bold, italic
or both. It also enables to change the font used to render an element. This last
functionnality is not yet supported.

math:math

31

mathcolor Enables users to change the color of an element. This attribute is fully supported.

mathbackground Enables users to change the background color of an element. Currently, this at-
tribute does nothing because SVG element does not have background to color. To
fully implement this attribute, we have to draw a colored rectangle that has the
size of the element.

All these tunnel parameters are forwarded to both formatting and drawing mode. They are available every-
where and can be modified by all elements. However, this modification is only reflected on the children,
it is a good way to implement the inherited style attributes.

32

Formatting mode

33

Name
math:mi|math:mn|math:mtext|math:ms (in formatting mode) — Formatting a token element.

Synopsis
<xsl:template match="math:mi|math:mn|math:mtext|math:ms" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="fontName" tunnel="yes"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="mathvariant" tunnel="yes"/>
<xsl:param name="mathcolor" tunnel="yes"/>
<xsl:param name="mathbackground" tunnel="yes"/>
 ...
</xsl:template>

Description
All these elements are treated the same way with a few exceptions. Therefore, in the implemented
stylesheet, they share the same template, both for formatting and for drawing. These elements are the leaf
of the MathML tree, they do not have any children, they only contain text.

After computing the font size of these elements, the ms lquote and rquote attributes are retrieved.
These attributes determine which symbol will be used to surround the text, respectively, on the left and on
the right. After that, the text content of the element is retrieved. lquote is added before the first character
and rquote after the last one if the element is ms.

Next, the font variant is computed to retrieve the width and the height of the text. An mi element with
one letter (except infinity symbol) has to be displayed in italic, so the font variant is computed using that
particularities. All the parameters of the box can now be computed: the height is given by font metrics file,
the width is computed using the stringWidth function and the baseline is set on the bottom of the text
with descender stretching under it. The box also contains an other measure: HEIGHTOVERBASELINE
which is the height of the box from its baseline to its top edge. Here is a figure that represent the box for
a token element:

Figure 1. Box for a token element

good text
WIDTH

HEIGHT
BASELINE

(X,Y)

HEIGHT OVER
BASELINE

The left bearing of the box is computed to shift the character inside the box. If no bearing is computed,
some characters are drawn outside the box. For exemple, the left part of an italic f goes out of the left side
of the box if no shift value is added by using the left bearing. The right bearing is computed to place the
subscript closer to some characters. In the case of an italic f, if the subscript is placed after the letter box,
it will be too far away from f. If the right bearing is withdrawn from the coordinates of the right side of
the box, the subscript will be drawn closer.

Finally, the tree node is annotated with the box representation and with style (attributes STYLE) infor-
mation about the box. A shift value (SHIFTX) is also added when the token has a left bearing. The left

math:mi|math:mn|math:mtext|
math:ms (in formatting mode)

34

bearing is a negative value from the left value of the first character bounding box. It occurs, for example,
with an italic f.

35

Name
math:mspace (in formatting mode) — Formatting a space.

Synopsis
<xsl:template match="math:mspace" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
 ...
</xsl:template>

Description
mspace follows the general scheme. After computing the font size, all attributes are retrieved and com-
puted in pixel. The box representation is computed and the tree is annotated with these values.

Parameters
This element, that represents a space, has three attributes that determine its size:

width Determines the width of the space.

height Determines the size of the box over the baseline.

depth Determines the size of the box under the baseline.

36

Name
math:mo[not(@t:stretchVertical) or @t:stretchVertical != true()] (in formatting mode) — Formatting an
operator.

Synopsis
<xsl:template match="math:mo[not(@t:stretchVertical) or @t:stretchVertical != true()]" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="fontName" tunnel="yes"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="mathvariant" tunnel="yes"/>
<xsl:param name="mathcolor" tunnel="yes"/>
<xsl:param name="mathbackground" tunnel="yes"/>
<xsl:param name="thickmathspace" tunnel="yes"/>
 ...
</xsl:template>

See
Variables delimPart and delimScale. Function chooseEntry.

Description
It is one of the most complex elements to render. It has a lot of attributes that determine many differ-
ent ways to display it. The default behaviour of operators is contained in a dictionary called operator
dictionary. This dictionary, coming from the specification 1 , is implemented in the file opera-
tor-dictionary.xml. It has been implemented in XML to make access easier using XPath. Modifi-
cations have been done to add useful information for our renderer and to add new characters. Characters
Prime and Times have been added to the dictionary to facilitate the rendering of these elements. New
attributes have also been added:

stretchHorizontal If an operator has to stretch, this attributes tells our renderer that it will stretch
horizontally.

stretchVertical If an operator has to stretch, this attributes tells our renderer that it will stretch
vertically.

These two attributes can be both set to true. In this case, the operator has to stretch vertically and horizon-
tally. None of these operators will be stretched in the current version of pMML2SVG.

The formatting mode for a mo element has two different behaviours. The first one is the normal mode that
annotate the tree like the other elements. The second is used to correct the annotation of the tree when the
operator has to be stretched vertically.

The specification tells us that such an operator should have the size of the biggest non-stretchy element
present in the same row of it. Therefore, when an operator has to be stretched, the bottom and the top
Y of this big element have to be known to compute the final size of the stretched operator. When the
second mode is called, these two values are retrieved by the following template paramaters: upperY and

1 http://www.w3.org/TR/2003/REC-MathML2-20031021/appendixf.html

math:mo[not(@t:stretchVertical)
or @t:stretchVertical !=

true()] (in formatting mode)

37

lowerY. The way these values are computed and how this second template mode is called is explained
in detail in the alignChild template.

This template is the normal mode, the correcting mode takes part in another template that is exmplained
further.

First of all, all attribute values of the operator are retrieved. To determine the default behaviour of these
values, the operator dictionary entries for this operator are retrieved. It is done by using XPath and the
document function. This function is used to browse an external file. After that, the best operator dictio-
nary entry is chosen with respect to the number of entries and the form attribute. If there is only one
entry, this entry is chosen. If there is more than one entry, a default form attribute has to be computed.
The rules to determine it are:

• If the operator is a member of a row, if there is more than one element in this row (excluding mspace)
and if this operator is the first element in the row (excluding mspace), the form attribute is prefix

• If the operator is a member of a row, if there is more than one element in this row (excluding mspace
and if this operator is the last element in the row (excluding mspace), the form attribute is postfix

• In all other cases, the form attribute is infix.

If there is an entry with this form attribute value, this entry will be chosen. If not, an entry will be chosen
with preference to infix form attribute value, then postfix and finally prefix. This choosing rule
is implemented in the function chooseEntry.

After choosing an entry, all other attributes will be finally retrieved. The value will be the user's specified
one, if it exists, then, the value from the operator dictionary and finally a default value from the specifica-
tion. The following attribute is retrieved:

lspace, rspace Determine the space around the operator, respectively, on the left and on the
right. Default value is thickmathspace.

stretchy Determines if an operator has to be stretched. Default value is false. If this
value is true, stretchHorizontal and stretchVertical variables
are retrieved from the dictionary, if it is possible. In all other cases, these two last
values are set to false. These variables are specific to pMML2SVG renderer.

symmetric Determines if the operator will be stretched symmetrically. The default value
is true.

maxsize, minsize Determine, respectively, the maximum and minimum size of an operator. These
two attributes are used to control the stretching of the operator. The default
value is, respectively, infinity and 1.

largeop Determines if the operator is a large operator such as integral, summation, etc.
The default value is false. If displayStyle values, from tunnel, and if
largeop are true, then the operator will be rendered with higher font size.
Typically, the scriptlevel to render this operator will decrease by one.

movablelimits Determines if the limit under or above an operator (such as integral, summa-
tion, etc.) can be moved and be rendered on the left of the operator instead of
under or above. The default value is false. This attribute is not yet used in
pMML2SVG.

accent Determines if an operator must behave like an accent. The default value is
false. This attribute is used to correct the vertical position of accent operator
such as circumflex accent, etc.

math:mo[not(@t:stretchVertical)
or @t:stretchVertical !=

true()] (in formatting mode)

38

After all attributes have been retrieved, the font size for the box is computed. The font size has to be bigger
if the largeop attribute is true. Therefore, the scriptlevel value is decremented by one in this
case. Otherwise, the font size is computed normally.

Some operators have to be replaced by similar glyphes to be retrieved in the font metrics. It is the case
with the under (and over) brackets.

After that, a correction is computed if the operator is an accent. This correction includes the computation
of the height of each glyph part that compose the operator if this last has to be stretched. It is done by
retrieving the bouding box of each part of the composed operator. This correction is necessary since the
parts that compose an operator have a higher height than the non-composed operator.

The left and right bearings are also computed the same way as in other tokens. They have the same be-
haviour as in others tokens.

The box size and position is then computed and the computation in pixel of minsize, maxsize,
lspace and rspace is done.

Finally, the tree node is annotated with box information, stretchy information (STRETCHY, stretch-
Horizontal and stretchVertical attributes), minsize and maxsize (in pixel) that will be
used when the operator will be corrected to stretch, lspace and rspace (in pixel), EMBELLISH infor-
mation, style information, SYMMETRIC information that will be used when the operator will be corrected
to stretch and a shift value (ACCENTSHIFT) that is used to correct the vertical position of an accent.

The EMBELLISH information is used to know where to add lspace and rspace. The specification
tells us what an embellished operator is:

Embellished operator definition

• An mo element.

• One of the elements msub, msup, msubsup, munder, mover, munderover, mmultiscripts,
or mfrac whose first argument exists and is an embellished operator.

• A row whose arguments consist (in any order) of one embellished operator and zero or more space-
like elements.

Adjustements have to be done when an embellished operator is computed. For example, if an munder
element is an embellished operator, the space determined by lspace and rspace has to be placed around
this munder element and not around its first mo child.

39

Name
math:mo[@t:stretchVertical = true()] (in formatting mode) — Correcting mode for an operator element.

Synopsis
<xsl:template match="math:mo[@t:stretchVertical = true()]" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="upperY" select="0" tunnel="yes"/>
<xsl:param name="lowerY" select="0" tunnel="yes"/>
<xsl:param name="fontName" tunnel="yes"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
 ...
</xsl:template>

Description
Some operators have to stretch symmetrically, it depends on the symmetric attribute value, it means
than its size above the middle of the expression is equal to its size under this middle. The middle can
be viewed as the position of the minus operator in the expression. Therefore, the first three lines of this
mode (after size computation) are used to determine the height of the delimiter with respect to the biggest
element and the symmetric attributes.

The next computation implements the behaviour of minsize and maxsize mo attributes. Since the
correcting mode works directly on the annotated tree computed by the normal mode, these two attributes
are retrieved directly from it.

Since the parts that compose an operator have a bigger width than the normal operator, the width of the
box has to be corrected too. It is done by retrieving the bounding box of each part. These bounding boxes
are used to compute the new width.

Finally, the box represention is corrected and directly annotated in the tree.

40

Name
chooseEntry — Chooses best entry in Operator Dictionary with respect to specification rules.

Synopsis
<xsl:function name="func:chooseEntry">
<xsl:param name="forms"/>
<xsl:param name="nodes"/>
 ...
</xsl:function>

Description
This function checks if the first form from the forms attribute exists in the operator dictionary entries.
If not, the recursion is called with the next form entries.

Note thate recursion is never called with the same parameters as the first function call because an element
is always removed from the forms sequence. Therefore, the recursion will always end because the size
of forms sequence decrease and fall down to 0.

Parameters
forms Sequence of form attribute string ordered by preference: user specified, rules from form at-

tributes, infix, postfix, prefix.

nodes Entries in the operator dictionary for the current operator.

Returns
Returns the best entry from the operator dictionary entries.

41

Name
math:math|math:mrow|math:merror|math:mphantom|math:menclose|math:mstyle (in formatting mode) —
Formatting a box element.

Synopsis
<xsl:template match="math:math|math:mrow|math:merror|math:mphantom|math:menclose|math:mstyle" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="errorMargin" tunnel="yes"/>
<xsl:param name="sizeMult" tunnel="yes"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="mathvariant" tunnel="yes"/>
<xsl:param name="mathcolor" tunnel="yes"/>
<xsl:param name="mathbackground" tunnel="yes"/>
<xsl:param name="veryverythinmathspace" tunnel="yes"/>
<xsl:param name="verythinmathspace" tunnel="yes"/>
<xsl:param name="thinmathspace" tunnel="yes"/>
<xsl:param name="mediummathspace" tunnel="yes"/>
<xsl:param name="thickmathspace" tunnel="yes"/>
<xsl:param name="verythickmathspace" tunnel="yes"/>
<xsl:param name="veryverythickmathspace" tunnel="yes"/>
 ...
</xsl:template>

See
subMrow

Description
All these elements are considered to have the same grouping comportment. Therefore, they are all handled
the same way in the same template with some exception in the code.

First of all, we retrieve the number of children of the element. If this number is zero, an empty box is
created and the tree is annotated with that box. If the number of children is greater than zero, the element
will be treated normally. This distinction is used to handle correctly empty mrow that is used frequently.

As usual, all attributes are first retrieved. The notations menclose attribute is retrieved and all mul-
tiple spaces are replaced by one space. This attribute is used to determine which element(s) will enclose
the row. It can contain more than one notation. For example, a row can be enclosed by both a circle and
a box. After that, common style attributes are retrieved (there are not all implemented yet) and finally
mstyle attributes are retrieved (in reality, only scriptlevel is retrieved here because it needs more
complex treatment than others). The currently supported attributes are:

scriptlevel Modifies the current level of the font size.

displaystyle Modifies the rendering of some elements.

Space literals (medium-
mathspace, etc.)

Modify the size value of space literals.

math:math|math:mrow|math:merror|
math:mphantom|math:menclose|
math:mstyle (in formatting mode)

42

scriptsizemultiplier Modifies the sizeMult factor.

mstyle attributes are quite different from other attributes because they have to be transmitted to their
children. Therefore, they are retrieved when the child templates are called and only when the current
element is an mstyle tag. Before formatting all children, new values for X and Y are computed. These
new values will help to add more spaces around the children because menclose and merror need them
to add elements (boxes, circle, root sign, etc.).

After that, children are computed using a template that will align them on the same baseline: subMrow.
It takes four arguments: the new computed X and Y values, the baseline and all the child elements. This
template will also correct the operator that has to stretch vertically by calling appropriate templates. After
that, the highest right box side of children are retrieved to compute the width of the box. The height and Y
information is computed by retrieving the lowest top side box and the highest bottom side box of children.
A shift value is also computed if the children are getting out of the canvas. For example, if the baseline is
at 20 and if a child has a height of 40, it will go out of the canvas by 20. Therefore, all the children have to
be shifted to be drawn correctly on the canevas. After that, the baseline for this box is computed by using
the shift value and the lowest baseline of all children.

Finally, the tree is annotated with box information, with the shift value, with value from its operator child
(EMBELLISH, LSPACE, RSPACE, stretchVertical and ACCENT) if the row is considered as an
embellished operator and NOTATION attribute for menclose element.

43

Name
subMrow

Synopsis
<xsl:template name="subMrow">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="nodes"/>
 ...
</xsl:template>

See
alignChild, getStretchyEmbellished

Description
This template is used to align the children of a row on the same baseline. It also calls stretchy correction
on operators that must stretch vertically. The first part of this function is to compute all the children on
the same baseline. To do that, it calls a template alignChild that takes the same parameters plus a
firstChild parameter that is used to determine which element is the first child. This first child will
give its basline attribute to all other children in order to align all children on the same baseline.

After that, the function corrects the elements that must stretch vertically. All the stretchy embellished
operators are first retrieved by using getStretchyEmbellished. If there are no stretchy embellished
operator, nothing is done and all the annotated children elements are returned. In the other case, a stretchy
correction may be done.

If a stretchy correction has to be done, the lowest and highest Y of all non stretchy children have to be re-
trieved to know the final size of the stretchy operators. To retrieve these children, getNonStretchyEm-
bellished function is used. If there is no element that does not stretch, nothing is done and all the
annotated children elements are returned without any correction. In the other cases, a stretchy correction
is done.

Now that the non-stretchy elements are retrieved, the lowest and highest Y can be computed and the
alignChild template is called again to recompute the row with these new parameters. All the elements
have to be recomputed because if an operator has to be stretched, its width will be greater. Therefore, all
the elements that follow it must have a new X coordinate. Finally, all elements are returned.

Parameters
x, y, baseline Formatting mode required parameters.

nodes Elements to handle in the template.

Returns
Returns all computed alements of the row.

44

Name
alignChild

Synopsis
<xsl:template name="alignChild">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="nodes"/>
<xsl:param name="firstNode" select="1"/>
 ...
</xsl:template>

Description
This template is called from subMrow and is used to compute and align a group of elements on the
same baseline. Typically, these elements will be a part of a row. This template will simply browse all
the elements, compute each of them by calling the appropriate template in formatting mode and give the
baseline of the first non stretchy element to all other elements in order to align them on the same baseline.
To know which element is the first non stretchy one, the firstChild parameter is used. The X coordinate
value will be incremented by the size of the current element to compute the next one.

Spaces are sometimes added between two elements. Typically, it will be done between an msub, msup
or msubsup element and an other element that is not an operator.

Parameters
x, y, baseline Formatting mode required parameters.

nodes Elements to handle in the template.

firstNode Determines if the current element is the first one in the row. It will give its baseline
to all other elements.

Returns
Returns all elements aligned on the same baseline.

45

Name
getStretchyEmbellished

Synopsis
<xsl:template name="getStretchyEmbellished">
<xsl:param name="nodes"/>
<xsl:param name="mode" select="'v'"/>
 ...
</xsl:template>

See
isEmbellished

Description
This function simply browses each node and checks if it is an embellished operator using isEmbel-
lished function. If the function returns true, the node is copied. Otherwise, nothing is done.

Parameters
nodes Elements to check.

mode Stretching mode: v is to retrieve the operators that stretch vertically (default value), h is for
horizontally, and b is for both vertically and horizontally.

Returns
Returns all the embellished operators that have to stretch vertically, horizontally or both.

46

Name
getNonStretchyEmbellished

Synopsis
<xsl:template name="getNonStretchyEmbellished">
<xsl:param name="nodes"/>
<xsl:param name="mode" select="'v'"/>
 ...
</xsl:template>

See
isEmbellished

Description
This function simply browses each node and checks if it is an embellished operator using isEmbel-
lished function. If the function returns true, nothing is done. Otherwise, the node is copied.

Parameters
nodes Elements to check.

mode Stretching mode: v is to retrieve the operators that stretch vertically (default value), h is for
horizontally, and b is for both vertically and horizontally.

Returns
Returns all the elements that are not an embellished operator that have to stretch vertically, horizontally
or both.

47

Name
isEmbellished — Checks if an element is an embellished operator that has to stretch vertically, horizontally
or both.

Synopsis
<xsl:function name="func:isEmbellished" as="xs:boolean">
<xsl:param name="node"/>
<xsl:param name="mode"/>
 ...
</xsl:function>

Description
This function implements the rules, from the MathML specification, that determine if an element is an
embellished operator.

See
http://www.w3.org/TR/2003/REC-MathML2-20031021/
chapter3.html#id.3.2.5.7

Parameters
node Element to check.

mode Stretching mode: v is to retrieve the operators that stretch vertically (default value), h is for hor-
izontally, and b is for both vertically and horizontally.

Returns
Returns true if an element is an embellished operator.

48

Name
math:maction (in formatting mode) — Represents an action that reacts at a user sollicitation.

Synopsis
<xsl:template match="math:maction" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
 ...
</xsl:template>

Description
This element is not fully supported yet. To implement a default behaviour, the first child of the maction
element is computed by using its formatting mode. Therefore, the maction node will not be annotated
and will be replaced by its first child node.

49

Name
math:mfenced (in formatting mode) — Represents an expression enclosed by fences and separated by
operators.

Synopsis
<xsl:template match="math:mfenced" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
 ...
</xsl:template>

See
mfencedCompose

Description
mfenced is an element that can be replaced by a mrow composed of two or more mo elements and its
children. For example

Example 5. mfenced: original code

<mfenced open="[" close="]" separators=";|">
 <mn>1</mn>
 <mn>2</mn>
 <mn>3</mn>
</mfenced>

can be replaced by:

Example 6. mfenced: replacement code

<mrow>
 <mo fence="true">[</mo>
 <mn>1</mn>
 <mo separator="true">;</mo>
 <mn>2</mn>
 <mo separator="true">|</mo>
 <mn>3</mn>
 <mo fence="true">]</mo>
</mrow>

This example will render like that, with:

Example 7. mfenced: renderer

[1; 2|3]

We can see in this example the three optionnal arguments of mfenced:

open Determines the opening fence of the expression. The default value is (.

math:mfenced (in formatting mode)

50

close Determines the closing fence of the expression. The default value is).

separators Determines a sequence of one character separator that will be used to separate each chil-
dren of mfenced. The default value is ,. If there are not enoough separators to separate
each child, the last one is repeated.

The formatting mode will transform the mfenced element into an mrow as mentionned above, and finally
call the formatting mode of the mrow on it. First, all attributes are retrieved and spaces in separators
atribute are deleted. A mrow node is created containing the opening and the closing mo and a composition
of children and separators. This composition is done calling the mfencedCompose template. This tem-
plate takes two arguments: the child nodes and the separators string attribute without space.

Finally, the formatting mode of the newly created mrow is called to compute and annotate it.

51

Name
mfencedCompose

Synopsis
<xsl:template name="mfencedCompose">
<xsl:param name="elements"/>
<xsl:param name="separators"/>
 ...
</xsl:template>

Description
This recursive template adds the first element and, if it is not the last element, the first separator is added
too into an mo element with the separator attribute set to true. Then, the template is called again
with elements and separators left. If it lefts only one separator, the recursion will always be called with
that separator.

Parameters
elements Child elements that compose the mfenced.

separators Separators to add between two consecutive elements.

Returns
Returns the new composed row of elements.

52

Name
isPrime — Checks if an element is a prime token.

Synopsis
<xsl:function name="func:isPrime" as="xs:boolean">
<xsl:param name="node"/>
 ...
</xsl:function>

See
http://www.nabble.com/RE%3A-Rendering-primes%3A-<msup><mi>x<-mi><mo>--
x2032-<-mo><-msup>-p18157100.html

Description
This function check if the node element is a prime. Such an element, as a superscript, has not to be shifted
and script level must remain the same as the base. The characters that return true with this function are
asterisk (x2a), degree (xb0), prime (x2032), double prime (x2033), back prime (x2035) and double back
prime (x2036).

Parameters
node Element to check.

Returns
Returns true if an element is an prime operator.

53

Name
math:msup (in formatting mode) — Formatting a superscript.

Synopsis
<xsl:template match="math:msup" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="rightSwitch" tunnel="yes"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

Description
msup element has two children: the first child is the base and the second is the superscript. After font size
computation, the base and the superscript are computed by calling the formatting mode template on the
first and second child. The superscript gets a X coordinate value that depends on the base's size in order
to place its box on the right of base one. Some general parameters are also modified when the superscript
computation is called: the display style has to be false and the script level has to be incremented by one.
Using this new value, the size of superscript elements will be smaller than base ones.

After that, some information is retrieved for each child: its height, Y coordinate of its top edge and its height
over its baseline. This data will be used to compute the final height, baseline and coordinate of the box.

The next four variables are used to compute a shift value for the superscript. By default, this value depends
on the base height, if the base element is lower than 1.2em, the shift value will be 80 percent of the base
height over the baseline. In all other case, the default value will be 90 percent of the base height over the
baseline. If the users as specified a shift value, using the superscriptshift attributes, this value will
be retrieved and used instead of the default one. Then the shift value is corrected with respect to the initial
position of the superscript and finally the descender of the superscript is added to the final shift value if
it is not a token element.

After that, the box representation is computed by using the shift value. The height is computed by taking
the difference between the lowest and the highest Y. The baseline is the baseline of the base.

Fnally, the tree node is annotated and contains, like all other elements, its box representation, and in-
formation that determine if the msup is an embellished operator (EMBELLISH, LSPACE, RSPACE,
ACCENT and stretchVertical. Some other information is also added to shift and to place the
superscript: SHIFTY_BASE that will shift the base on the y-axis to place it correctly if neces-
sary, SHIFTY_SUPERSCRIPT that will shift the superscript on the y-axis to its final position, and
SHIFTX_SUPERSCRIPT that will withdraw the LSPACE value of the superscript if this one is an em-
bellished operator. This last shift on x-axis is done to draw the superscript much closer to its base.

54

Name
math:msub (in formatting mode) — Formatting a subscript.

Synopsis
<xsl:template match="math:msub" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="rightSwitch" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

Description
msub element has two children: the first child is the base and the second is the subscript. It works quite
the same way as msup. The first difference is the computation of the initial X coordinate for the subscript
child. This value is computed using the right bearing value of the base if this last one has such a value. This
computation is done in order to place the subscript elements closer to the base. Other differences appear
in the computation of subscript shift value. This value depends on the subscript height and not on the base
height like the superscript in the msup element. Initially, the shift is 50 percent of the subscript height over
the baseline. If the user specified the subscriptshift attribute, it will be retrieved and used instead
of the initial value. A last correction is added which depends on the initial positionnement of the subscript.

The tree node is annotated with the same information as msup. However, only the subscript element gets
shift attributes: SHIFTY_SUBSCRIPT and SHIFTX_SUBSCRIPT that have the same role that in the
msup element.

55

Name
math:msubsup (in formatting mode) — Formatting both a superscript and a subscript.

Synopsis
<xsl:template match="math:msubsup" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="rightSwitch" tunnel="yes"/>
<xsl:param name="overUnderSpace" tunnel="yes"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

Description
msubsup element has three children: the first child is the base, the second is the subscript and the third
is the superscript. The formatting mode is a composition of the msup and msub formatting mode. The
superscript has the same computation as in msup element and subscript as in msub. The shift values for
the scripts are also the same. A difference appears before computing the box representation, an other shift
value is computed if the superscript covers the subscript. In this case, both superscript and subscript have
to be shifted to remove this covering.

The box representation is then computed and finally, the tree is annotated exactly the same way as for
both msup and msub elements.

56

Name
math:mover (in formatting mode) — Formatting an overscript.

Synopsis
<xsl:template match="math:mover" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="overUnderSpace" tunnel="yes"/>
 ...
</xsl:template>

Description
It consists of two children: the base is the first child and the overscript is the second. First, the base is
computed and information about its box is retrieved to achieve further computation. Due to accent
behaviour, adjustement has to be done to compute the overscript. First, the accent attribute is retrieved.
If no value has been entered, accent is set to false. Then, the overscript is computed and, after that, the
accent value is recomputed by using the ACCENT attributes of the overscript if this one is an embellished
operator. If the new accent value differs from the old one, the overscript have to be recomputed.

These two passes have to be done because the accent attribute modifies the computation of the overscript
element. If accent is true, the overscript has to be closer and the scriptlevel is not modified.
On the other hand, when accent is false, the scriptlevel for the overscript element has to be
incremented by one. Therefore, this element will have a smaller font size.

After overscript computation, some information about its box is retrieved to compute the mover final box.

A shift value is then computed to move the overscript away from the base. This value is zero if the accent
attribute is true, if not, this space shift is taken from the overUnderSpace global parameter.

The box representation of the moverbox is then computed. The height is the sum of the base height, the
overscript height and the shift value previously computed. The baseline is the base's one and, since the
overscript has to be drawn above the base, then the upper left corner Y coordinate is the Y coordinate of
the overscript top edge.

Finally, the tree node is annotated with the box representation, with the embellished operator attributes
and with shift values:

SHIFTX_BASE This shift value is used to centre the base horizontally with the overscript if
the base is smaller than the overscript.

SHIFTX_OVERSCRIPT This shift value is used to centre the overscript horizontally with the base if
the overscript is smaller than the base.

SHIFTY_BASE This value is used to place the base at its final place. The overscript has to be
placed above the base. Therefore, the base has to be shifted down on the y-axis.

SHIFTY_OVERSCRIPT The overscript has to be shifted up on the y-axis to be drawn over the base.

57

Name
math:munder (in formatting mode) — Formatting an underscript.

Synopsis
<xsl:template match="math:munder" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="overUnderSpace" tunnel="yes"/>
 ...
</xsl:template>

Description
It consists of two children: the first is the base and the second is the underscript. munder is computed
exactly the same way as the mover element. Only some variable names change, typically, overscript
is replaced by underscript. The shift values are also computed differently because the underscript
has to be drawn under the base and not over it.

58

Name
math:munderover (in formatting mode) — Formatting both an underscript and an overscript.

Synopsis
<xsl:template match="math:munderover" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="overUnderSpace" tunnel="yes"/>
 ...
</xsl:template>

Description
It consists of three children: the base is the first, the underscript is the second and the overscript is the
third. This element is formatted as a combination of both an mover and an munder element. It first
computes the base, then the underscript and finally the overscript. These two last elements are computed
in two passes to handle correctly the accent attributes. These two passes are done the same way as for
mover element.

The box representation is then computed. The height is the sum of each element's height plus the overscript
and the underscript shift value. The width is the width of the largest element among the base, the overscript
and the underscript. The baseline is the base's one and the upper left corner Y is the Y coordinate of the
overscript box top edge.

The tree is finally annotated with box representation and with all shift values from both mover and
munder elements. The x-axis shift values are computed to center each element.

59

Name
math:mfrac (in formatting mode) — Formatting a fraction.

Synopsis
<xsl:template match="math:mfrac" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="displayStyle" tunnel="yes"/>
<xsl:param name="fracWidMarg" tunnel="yes"/>
<xsl:param name="numDenSpace" tunnel="yes"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

Description
It consists of two children: the first is the numerator and the second is the denominator. First, like all
other elements, the numerator and the denominator are computed using the corresponding formatting mode
template. When calling the template, some parameters have to be modified to follow the specification.
If the display style is false, the script level has to be incremented by one, and, if it is true, it has to
be set to false.

The width, height and bottom edge Y coordinate of each child is then retrieved to help compute the box
representation of the fraction.

After that, mfrac attributes is retrieved:

linethickness Determines the size of the fraction bar. By default, this value is 1. After retrieving it,
the line thickness is computed in pixel using the unitInPx function. A value with
no unit determines a multiplication of the thin value, for example the default value is
1, without unit, it means that the fraction bar must have a height of 1 * thin. It is
why the thin space literal is computed in pixels before computing the final fraction
bar height. This value will be used as default value for the unitInPx function.

numalign Determines the alignement of the numerator. Values can be center, left or
right. The default one is center.

denomalign Determines the alignement of the denominator. Values can be center, left or
right. The default one is center.

A shift value is also computed to place the fraction bar, this value is computed from the baseline. The
fraction bar has to be aligned with a minus sign, in the middle of the text. Therefore, the half size of letter
x is used.

The box representation is then computed. The width is the maximum between the numerator and the
denominator width plus a margin value both on the right and on the left from the global parameters
(fracWidMarg). The baseline and the bottom of the box is set.

Finally, the tree is annotated with the box representation and with shift value for the numerator and the
denominator:

math:mfrac (in formatting mode)

60

SHIFTXNUM Represents an x-axis shifting to place the numerator with respect to the numalign at-
tribute.

SHIFTXDEN Represents an x-axis shifting to place the denominator with respect to the denomalign
attribute.

SHIFTYNUM Represents a y-axis shifting to place the numerator above the fraction bar to its final po-
sition.

SHIFTYDEN Represents a y-axis shifting to place the denominator under the fraction bar to its final
position.

Values to place and draw the fraction bar are also added to the annotated tree: FRAC_BAR_Y is the Y
coordinate of the fraction bar and FRAC_BAR_HEIGHT is its size.

61

Name
math:msqrt (in formatting mode) — Formatting a square root.

Synopsis
<xsl:template match="math:msqrt" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="rtFrnSpcFac" tunnel="yes"/>
<xsl:param name="rtTopSpc" tunnel="yes"/>
 ...
</xsl:template>

Description
Its children constitute a row and must be treated using the same mechanisms that for the mrow. First of
all, the children are computed using the subMrow template (like an mrow). A space is added before the
children to allow drawing of the square root symbol in front of them. The space value is computed using
rtFrnSpcFac value from the global parameters with respect to the current font size.

The box representation is then computed the same way as in an mrow element. However, in opposition
to mrow a space is added on the top of the box to draw the square root line over the child elements. This
value is coming from the global parameters (rtTopFac).

Finally, the tree is annotated the same way as an mrow element.

62

Name
math:mroot (in formatting mode) — Formatting a n-ary root.

Synopsis
<xsl:template match="math:mroot" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="scriptlevel" tunnel="yes"/>
<xsl:param name="rtFrnSpcFac" tunnel="yes"/>
<xsl:param name="rtTopSpc" tunnel="yes"/>
 ...
</xsl:template>

Description
It consists of two children: the first one is the base and the second is the index. First, the base child and
the index child are computed and some information about their boxes is retrieved (size and position) for
further computation. The base initial X coordinate is shifted to the right to add space for drawing the root
symbol. After that, the box representation is computed using child information.

Finally, the tree is annotated with the box, with information about the size and the place of the radical
(RADICAL_HEIGHT and RADICAL_Y) and with shift values for the children:

SHIFTY_INDEX Determines a y-axis shifting to place the index.

SHIFTY_BASE Determines a y-axis shifting to place the base.

63

Name
math:mtable (in formatting mode) — Formatting a table.

Synopsis
<xsl:template match="math:mtable" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="tableSpace" tunnel="yes"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

See
computeStretch, stretchRows, mtableWidth, mtableShiftY and mtableShiftX.

Description
This element has one or more mtr elements as children. It is also quite complex to render, elements that
compose a column have to be aligned. The elements on a line also have to be aligned. The table must be
centered on the middle of the mathematic expression. The main idea is to first compute all the cells on the
same place, as if they were not in a table. For example, in the two by two identity matrix, all 0 and 1 are
computed like simple mn element. Finally, shift values are computed to move each cell to its final position.

Therefore, in the formatting mode, the first action is to compute all mtr children by calling the appropriate
template in formatting mode. After that, cells that contain a stretchy operator have to be stretched with
respect to other cells that compose the columns and the row. For example, if a column contains a cell with
a right arrow, given that the arrow has to stretch horizontally, the width of this cell has to have the value
of the largest cell in the column. To compute the new size of the cells, stretch values are computed using
the computeStretch function and the cell nodes are modified by using the stretchRows template.

After that, the box representation is computed. The height is the sum of each row's height plus spaces be-
tween each two lines. The space size value comes from the global paramaters (parameter tableSpace).
The table width is computed by calling the mtableWidth template on rows. The baseline is placed at
the middle of the table. And, the upper left corner Y is the Y coordinate of the table top edge.

The columnalign is then retrieved. This attributes is used to determine how the cells in a column have
to be aligned. The default value is center. The shift values for the y-axis are computed by using the
mtableShiftY template and the shift values for the x-axis are computed by using the mtableShiftX
template and columnalign attribute.

Finally, the tree is annotated with the box representation and all shift values.

64

Name
computeStretch

Synopsis
<xsl:template name="computeStretch">
<xsl:param name="rows"/>
<xsl:param name="i" select="1"/>
<xsl:param name="j" select="1"/>
 ...
</xsl:template>

See
isEmbellished

Description
All cells are handled by using i and j parameters as if the template were two loops. However, given that
XSLT does not provide loop command, the two loops are done by using a recursion scheme.

For each cell, the width is the largest cell in the column if the element in the current cell has to be stretched
horizontally, zero in all other cases. The height is the highest cell in the row if the element in the current
cell has to be stretched vertically, zero in all other cases. To check if an element has to be stretched, the
isEmbellished template is used.

Parameters
rows Row children from a table.

i Column index of the current element. By default, this index is 1.

j Row index of the current element. By default, this index is 1.

Returns
As output, the template provides a list of height and width for each cell. Rows are delimited by a semi-

colon in that list. For example, in the following table
⎛
⎝1 2
3 4

⎞
⎠ , the output will be 1.width 1.height

2.width 2.height ; 3.width 3.height 4.width 4.height. The value for width is
zero if the content of the cell has not to be stretched horizontally, if the content has not to be stretched
vertically, the height is zero.

65

Name
mtableWidth

Synopsis
<xsl:template name="mtableWidth">
<xsl:param name="rows"/>
<xsl:param name="i" select="1"/>
<xsl:param name="width" select="0"/>
<xsl:param name="tableSpace" tunnel="yes"/>
 ...
</xsl:template>

Description
For each column, the width of the largest cell in the column and space size between two cells (ta-
bleSpace global parameter) are added to width. The recursion is called with an i incremented by one
and the newly computed width. The final output (when there is no more column to treat) is the value of
the accumulator width minus one space size between to cell.

Parameters
rows Row children from a table.

i Index of the current column that is handled. By default, this index is 1.

width Accumulator that contains the width for a table composed of the (i-1)th first columns of all
the row children.

Returns
Returns the total width of a table.

66

Name
mtableShiftY

Synopsis
<xsl:template name="mtableShiftY">
<xsl:param name="y"/>
<xsl:param name="rows"/>
<xsl:param name="tableSpace" tunnel="yes"/>
 ...
</xsl:template>

Description
Recursion is done over the rows set. At each step, a shift value is computed for the first row in the set
by using the difference between its final Y position (given in parameter) and its current Y position. The
recursion is called for the rest of the set with an updated Y value. This new value is computed by using the
height of the first row and size of space between two cells (tableSpace global parameter).

Parameters
rows Row children from a table.

y Final top edge Y coordinate of the first row in the rows parameters.

Returns
As output, it provides a sequence of values that represent the shift for all rows: (1st row shift,
2nd row shift, ..., last row shift).

67

Name
mtableShiftX

Synopsis
<xsl:template name="mtableShiftX">
<xsl:param name="rows"/>
<xsl:param name="columnalign"/>
<xsl:param name="i" select="1"/>
<xsl:param name="j" select="1"/>
<xsl:param name="width" select="0"/>
<xsl:param name="tableSpace" tunnel="yes"/>
 ...
</xsl:template>

Description
The recursion is done the same way as in the computeStretch template.

For each cell, the alignement value (center, left or right) is retrieved from, ordered by preference,
mtd element (retrieved by using XPath on the rows parameter), mtr element (also retrieved by using
XPath on the rows parameter) or mtable element (given in parameter). If no value is specified by the user
in mtd, mtr nor mtable, the default alignement value, coming from the mtable element, is center.

After computing the alignement value, the largest element in the current column and the width of the
current cell are retrieved. These values are then used to compute a shift value with respect to the alignement
value. The width accumulator is used to determine the initial shift value to place the current cell in its
final column.

Parameters
rows Row children from a table.

columnalign columnalign mtable attribute formatted as a sequence.

i Column index of the current element. By default, this index is 1.

j Row index of the current element. By default, this index is 1.

width Accumulator that contains the width for a table composed of the (i-1)th first columns
of all the row children.

Returns
As output, it provides a sequence of shift value for each cell, the row are separated by a semicolon. It is

done the same way as in the computeStretch template. For example, in the following table
⎛
⎝1 2
3 4

⎞
⎠ ,

the output will be 1.shiftValue 2.shiftValue ; 3.shiftValue 4.shiftValue.

68

Name
math:mtr (in formatting mode) — This element represent a row of a table.

Synopsis
<xsl:template match="math:mtr" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="tableSpace" tunnel="yes"/>
 ...
</xsl:template>

See
alignRow

Description
mtr element is computed like a basic mrow element. It is composed by one or more mtd children.

After computing the current font size, the cells that compose the row are computed by using the alignRow
template in order to align all the cells on the same baseline. After that, the box representation of the row
is computed. The height is the difference between the highest and the lowest Y coordinate among all the
children. The width is the sum of all the cells width plus a space between them (using the tableSpace
global parameter). The baseline is the lowest baseline among children and upper left corner Y coordinate
is the lowest Y coordinate among all the children.

The columnalign is then retrieved. The default value is inherited if no one is specified.

Finally, the tree is annotated by using the box representation, the shift value —as it is computed in an
mrow element—, and with COLUMNALIGN attributes.

69

Name
alignRow

Synopsis
<xsl:template name="alignRow">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
<xsl:param name="nodes"/>
<xsl:param name="firstNode" select="0"/>
 ...
</xsl:template>

See
alignChild

Description
This template has the same behaviour as the alignChild template from mrow. It calls the formatting
mode on the current element and aligns it on the first child baseline. This child is found with the firstN-
ode parameter.

Parameters
x, y, baseline Formatting mode required parameters.

nodes Elements handled in the template.

firstNode Determines if the current element is the first one in the row. It will give its baseline
to all other elements.

Returns
Returns all cells aligned on the same baseline.

70

Name
math:mtd (in formatting mode) — This element represents a cell in a row. It has the same behaviour as
a row element.

Synopsis
<xsl:template match="math:mtd" mode="formatting">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="baseline" select="0"/>
 ...
</xsl:template>

Description
The formating mode is exaclty the same as the mrow element. The only difference is the attribute colum-
nalign that has to be retrieved. The default value is inherited if none is specified.

71

Name
stretchRows

Synopsis
<xsl:template name="stretchRows">
<xsl:param name="rows"/>
<xsl:param name="stretchValues"/>
 ...
</xsl:template>

See
computeStretch

Description
This template simply calls mtr stretch mode template on each row. This new template mode is used to
modify the width and the height of a node. It works directly in the annotated tree and changes the value
of WIDTH and HEIGHT annotation.

Parameters
rows Rows of a table to correct.

stretchValues Values computed by the computeStretch template.

Returns
Returns the corrected rows.

72

Name
math:mtr (in stretch mode) — Correct width and height on a row.

Synopsis
<xsl:template match="math:mtr" mode="stretch">
<xsl:param name="stretchValues"/>
 ...
</xsl:template>

See
computeStretch, stretchCols

Description
First, all its mtd elements are recomputed by using the stretchCols template. After that, the annotated
tree is recomposed by using these new cells.

Parameters
stretchValues Sequence that represents the new width and height (computed by the com-

puteStretch template) for all the cells in that row.

73

Name
stretchCols

Synopsis
<xsl:template name="stretchCols">
<xsl:param name="rows"/>
<xsl:param name="stretchValues"/>
 ...
</xsl:template>

Description
It simply recomputes all mtd elements by calling their stretch mode template with new width and height
as paramaters.

Parameters
rows All cells that will be corrected.

stretchValues New width and height values (in a sequence) for all these cells.

74

Name
math:mtd (in stretch mode) — Correct width and height on a cell.

Synopsis
<xsl:template match="math:mtd" mode="stretch">
<xsl:param name="width"/>
<xsl:param name="height"/>
 ...
</xsl:template>

See
computeStretch

Description
This template simply copies the annotated node and changes WIDTH and HEIGHT annotations if the para-
maters are not equal to zero.

Parameters
width New width for the element.

height New height for the element.

75

Drawing mode

76

Name
math:mi|math:mn|math:mtext|math:ms (in draw mode) — Drawing a token.

Synopsis
<xsl:template match="math:mi|math:mn|math:mtext|math:ms" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

Description
To draw these elements in the SVG file, the SVG text element is used. The placement of this element is
done using the coordinates of the baseline's reference dot. To compute these coordinates, the height over
baseline value is added to the upper left cornerY coordinate.

77

Name
math:mspace (in draw mode) — Drawing a space.

Synopsis
<xsl:template match="math:mspace" mode="draw"/>

Description
Nothing has to be drawn with these element. Therefore, an empty template has been created in the XSLT
stylesheet.

78

Name
math:mo (in draw mode) — Drawing an operator.

Synopsis
<xsl:template match="math:mo" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

See
drawHorizontalDelimiter and drawVerticalDelimiter

Description
First, the final coordinate is computed according to shift and left space values. There are three different
display ways of an operator with respect to the direction of stretch. If the operator has to stretch vertically,
the drawVerticalDelimiter is called, if the operator has to stretch horizontally, the drawHori-
zontalDelimiter is called. In all other cases, the operator is drawed like other token elements (mi,
mn, etc.).

The operator that has to be composed is grouped into a SVG g element with a common style attribute.
This group will simplify the drawing of the stretched operator parts in drawXxxDelimiter template.

79

Name
math:math|math:mrow|math:merror|math:mphantom|math:menclose|math:mstyle (in draw mode) —
Drawing a box.

Synopsis
<xsl:template match="math:math|math:mrow|math:merror|math:mphantom|math:menclose|math:mstyle" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

See
drawEnclose

Description
All the children of a row are grouped in a SVG g tag that represents a group of elements on the canvas. The
style attribute is set on this tag to determine the default style of the box. After writing this tag, the drawing
mode template of each child is called in order to draw them, except if the element is a mphantom. The
children of a mphantom element are never drawn. These children are shifted on the y-axis if necessary
(attribute SHIFT).

If the element is an merror element, a box is drawn around child elements using the SVG rect tag
that draws a rectangle.

If the element is an menclose element, the drawEnclose template is called to write decoration around
child elements. This template takes five parameters: X and Y coordinates, WIDTH and HEIGHT of the row
and NOTATION attribute that is transformed into a sequence to handle multiple notation.

80

Name
drawEnclose

Synopsis
<xsl:template name="drawEnclose">
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="width"/>
<xsl:param name="height"/>
<xsl:param name="notations"/>
<xsl:param name="errorMargin" tunnel="yes"/>
 ...
</xsl:template>

Description
This template will browse all notations and draw the appropriate line and rect SVG tag corresponding
to the notation. The circle is drawn using the SVG ellipse tag to draw an ellipse and the longdiv
notation is drawn using the SVG path element to draw a curve. This element is used to draw complex
paths on the canvas.

Parameters
x, y X and Y coordinates of the box that is decorated.

width Width of the box that is decorated.

height Height of the box that is decorated.

notations Notation that will decorate the box

81

Name
math:msup (in draw mode) — Drawing a superscript.

Synopsis
<xsl:template match="math:msup" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
The drawing of this element is very simple. It calls the drawing mode template of each child by adding
the shift values that have been computed in the formatting mode.

82

Name
math:msub (in draw mode) — Drawing a subscript.

Synopsis
<xsl:template match="math:msub" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
The drawing mode is exactly similar to the msup element. Only the name of the shift attributes differ.

83

Name
math:msubsup (in draw mode) — Drawing both a superscript and a subscript.

Synopsis
<xsl:template match="math:msubsup" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
The drawing mode simply draws the base, the subscript and the superscript are drawn by calling the draw
mode template of each child. The shift values are added when calling these templates.

84

Name
math:mover (in draw mode) — Drawing an overscript.

Synopsis
<xsl:template match="math:mover" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
The drawing mode consists simply of drawing the children of mover by calling their template in drawing
mode. The shift values are added in the call to correctly place each element.

85

Name
math:munder (in draw mode) — Drawing an underscript.

Synopsis
<xsl:template match="math:munder" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
Like the formatting mode, the drawing mode of munder element is exactly the same as the mover one,
except some variable names.

86

Name
math:munderover (in draw mode) — Drawing both an overscript and an underscript.

Synopsis
<xsl:template match="math:munderover" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
All children are simply drawn by using the corresponding drawing mode template with the corresponding
shift values.

87

Name
math:mfrac (in draw mode) — Drawing a fraction.

Synopsis
<xsl:template match="math:mfrac" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
The drawing mode is quite simple. It draws each child by calling the drawing mode on the children using
computed shift values from the tree. Finally, it draws a line for the fraction bar using the SVG line
element, Y coordinate and height from the annotated node.

88

Name
math:msqrt (in draw mode) — Drawing a square root.

Synopsis
<xsl:template match="math:msqrt" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
<xsl:param name="rtFrnSpcFac" tunnel="yes"/>
 ...
</xsl:template>

Description
The drawing mode first draws each child by calling the corresponding template in the drawing mode. After
that, the square root symbol has to be drawn in front of the children and a line is added over them. It is
done by using four SVG line elements.

89

Name
math:mroot (in draw mode) — Drawing a n-ary root.

Synopsis
<xsl:template match="math:mroot" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
<xsl:param name="rtFrnSpcFac" tunnel="yes"/>
 ...
</xsl:template>

Description
First, the base and the index are drawn using the appropriate template in the drawing mode. Shift values
are also added to Y coordinate to draw them in the correct place. After that, the root symbol is drawn the
same way as in the msqrt element.

90

Name
math:mtable (in draw mode) — Drawing a table.

Synopsis
<xsl:template match="math:mtable" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

See
drawRows

Description
To apply the correct shift values on each cell, the drawing mode calls an other template: drawRows. This
template will draw each row by using the computed shift values.

91

Name
drawRows

Synopsis
<xsl:template name="drawRows">
<xsl:param name="rows"/>
<xsl:param name="shiftY"/>
<xsl:param name="shiftX"/>
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
This template calls mtr drawing mode template on each row by using the correct shift value. The y-axis
shift value is direclty added to the yShift parameters. The x-axis values for a row are transformed into
a sequence and given to the template through the shiftX parameter.

Parameters
rows Sequence of mtr elements.

shiftX Sequence of x-axis shift values for each cell in each row.

shiftY Sequence of y-axis shift value to move rows to their final place.

xShift and yShift Required parameters of drawing mode template.

92

Name
math:mtr (in draw mode) — Drawing a row in a table.

Synopsis
<xsl:template match="math:mtr" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
<xsl:param name="shiftX"/>
 ...
</xsl:template>

See
drawCols

Description
To apply the correct shift values on each cell, the drawing mode calls an other template: drawCols. This
template will draw each cell by using the computed shift values.

93

Name
drawCols

Synopsis
<xsl:template name="drawCols">
<xsl:param name="rows"/>
<xsl:param name="shiftX"/>
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
This template calls mtd drawing mode template on each cell by using the correct shift value. The x-axis
shift value is direclty added to the xShift parameters.

Parameters
rows Sequence of mtd elements.

shiftX Sequence of x-axis shift values for each cell in this row.

xShift and yShift Required parameters of drawing mode template.

94

Name
math:mtd (in draw mode) — Drawing a cell of a table.

Synopsis
<xsl:template match="math:mtd" mode="draw">
<xsl:param name="xShift"/>
<xsl:param name="yShift"/>
 ...
</xsl:template>

Description
This mode behaves exactly like the mrow drawing mode. It calls the drawing mode of all its children.

95

Name
drawVerticalDelimiter

Synopsis
<xsl:template name="drawVerticalDelimiter">
<xsl:param name="delimiter"/>
<xsl:param name="height"/>
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="fontSize"/>
<xsl:param name="variant"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

See
findBestSize and drawVerticalExtenser

Description
First of all, a verification must be done to know if the operator has to be stretched. If it does not have to
stretch, it will be simply drawn like a non-stretchy operator. After that, another verification checks if the
operator can be composed, stretched or not. This verification is done using the two structures: delimPart
and delimScale. If the operator cannot be composed or stretched, it will simply be centered by using
a SVG text element. If the operator is in the delimPart structure, the operator will be composed, if
the operator is in the delimScale structure, the operator will be scaled.

Compose
The number of parts needed to compose the symbols is retrieved from the structure. This number will be
used to know which type of operator will be composed. After that, the index of part in the structure will
be computed and the bounding box of each part will be retrieved from the metrics. A correction is done
to avoid the small gaps on the canvas. The next line computes the number of extensers that will be added
and the final font size of the operator calling the function findBestSize. A new font size is computed
in order to have a round number of parts.

After all these computations, the bottom and the top parts of the operator will be drawn using a SVG text
element. The top delimiter is only drawn if there are more than two parts or if the extenser attribute
is bottom. In the same way, the bottom delimiter is only draw if there is more than two parts or if the
extenser attribute is top. Now, the extenser has to be drawn and the way to draw them depends on
the number of parts.

If the operator has four parts (like a curly bracket for example), a middle part is then added using a text
element and two groups of extenser are drawn around this middle part using drawVerticalExtenser
function. The extenser is only drawn if the number returned by findBestSize is bigger than zero.

If the operator has two or three parts, the extenser will be added if the number returned by findBestSize
is bigger than zero. If the operator has two parts and if the extensers have to be drawn on the top, the Y
coordinate has to be on the top of the box. In the other cases, it has to be under the top part of the operator.

drawVerticalDelimiter

96

Scale
First, a scale factor is computed and then the operator is drawn in a text box that is transformed using
the SVG transform attribute and a scale transformation. The Y coordinate has to be corrected because
the scale transformation modifies the coordinate system.

Parameters
x, y X and Y coordinates of the bottom left corner of the operator box.

delimiter Operator to stretch.

height Total height of the box that the operator has to fill.

fontSize Initial font size of the operator.

variant Font variant for the operator.

97

Name
drawVerticalExtenser

Synopsis
<xsl:template name="drawVerticalExtenser">
<xsl:param name="n"/>
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="extenser"/>
<xsl:param name="extenserSize"/>
<xsl:param name="fontSize"/>
<xsl:param name="rotate" select="false()"/>
 ...
</xsl:template>

Description
It simply draws an extenser, then, if n is greater than one, the function is called again with next Y coordinate
and decremented n.

Parameters
n Number of extensers to draw

x X coordinate for extensers

y Y coordinate for the bottom extenser

extenser Extenser to draw

extenserSize Extenser size (in em)

fontSize Size of the font to draw the extenser

rotate true if the extenser has to be rotated

98

Name
drawHorizontalDelimiter

Synopsis
<xsl:template name="drawHorizontalDelimiter">
<xsl:param name="delimiter"/>
<xsl:param name="width"/>
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="fontSize"/>
<xsl:param name="variant"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

See
findBestSize and drawHorizontalExtenser

Description
The drawHorizontalDelimiter template is similar to the vertical one except in composition of
operator. Some operators have to be composed with a vertical part that is rotated. In SVG, the rotation is
done using the transform attribute and a rotate transformation. The modification that is done against
the vertical composition is the check of the hrotate attributes of the delimPart that indicates if parts
have to be rotated. And, using the hrotate values, the measure of the part that must retrieve the height
if the parts are rotated, or the width of parts if not.

The other modifications concern adding the rotate transformation when the parts are drawn and calling the
drawHorizontalExtenser template instead of the drawVerticalExtenser one.

Parameters
x, y X and Y coordinates of the bottom left corner of the operator box.

delimiter Operator to stretch.

width Total width of the box that the operator has to fill.

fontSize Initial font size of the operator.

variant Font variant for the operator.

99

Name
drawHorizontalExtenser

Synopsis
<xsl:template name="drawHorizontalExtenser">
<xsl:param name="n"/>
<xsl:param name="x"/>
<xsl:param name="y"/>
<xsl:param name="extenser"/>
<xsl:param name="extenserSize"/>
<xsl:param name="fontSize"/>
<xsl:param name="rotate" select="false()"/>
<xsl:param name="fontName" tunnel="yes"/>
 ...
</xsl:template>

Description
This template is similar to drawVerticalExtenser except that the Y coordinate remains the same
through the recursive call and X is incremented to the next coordinate at each template call.

Parameters
n Number of extensers to draw

x X coordinate for extensers

y Y coordinate for the bottom extenser

extenser Extenser to draw

extenserSize Extenser size (in em)

fontSize Size of the font to draw the extenser

rotate true if the extenser has to be rotated

100

Name
findBestSize — Finds a round number of extensers that will cover a space with a font size as near as
possible to the initial font size.

Synopsis
<xsl:function name="func:findBestSize" as="xs:double+">
<xsl:param name="height"/>
<xsl:param name="fontSize"/>
<xsl:param name="minPart"/>
<xsl:param name="partsSize"/>
<xsl:param name="extenserSize"/>
 ...
</xsl:function>

Description
This function follows the following algorithm:

1. If $height <= $partsSize * $fontSize then return (0, $height div $parts-
Size)

2. Else

a. Compute: $rawRatio = ($height - $partsSize * $fontSize) div ($font-
Size * $extenserSize) + $minPart and $roundRatio = round($rawRatio)

b. Compute $ratio:

i. If $minPart < 3 or $roundRatio is even then $ratio = $roundRatio

ii. Else

A. If $rawRatio < $roundRatio alors $ratio = $roundRatio - 1

B. Else $ratio = $roundRatio + 1

c. Return ($ratio - $minPart, $height div (($ratio - $minPart) * $ex-
tenserSize + $partsSize))

The Step 2.b is used to obtain an even number of extensers when the operator has a middle part. The
number of extensers at the top (or on the left) of the middle part must be equal to the number of extensers
at the bottom (or on the right) of this part.

Parameters
height Total height to cover

fontSize Initial font size

partsSize Required part size (in em) (all element excepts the extenser)

extenserSize Extenser size (in em)

minPart Required number of part

findBestSize

101

Returns
Returns a sequence of two numbers: the first is the number of extensers to add and the second is the new
computed font size.

102

Font metrics stylesheet

Introduction
This stylesheet offers functions to interact with an XML FOP file metrics. Currently, three types of FOP
metrics are supported: WinAnsiEncoding, Type1 font and TTF font. The last one is prefered because the
metrics contain more symbol metrics and more precise metrics. WinAnsiEncoding and Type1 files only
contain a maximum of 255 metrics.

103

Name
findFont — Finds an existing font metrics file for a font name with respect to variants (italic, bold, etc.)

Synopsis
<xsl:function name="func:findFont">
<xsl:param name="font"/>
<xsl:param name="variant"/>
 ...
</xsl:function>

Description
Firstly, if a metrics file exists for the current font name and variant, the name of this file is returned. If
not, a check is proceeded to simplify the variant.

If the variant is -Bold-Italic, a metrics file is searched for the -Bold and the -Italic variant. If
one of them exists, the name of this metrics file is returned. Otherwise, a metrics file with no variant is
checked and returned if it exists.

If the variant is only -Bold or only -Italic, a check for a file with no variant is proceeded. If it
succeeds, the name of this metrics file is returned.

In all other cases, when no font metrics file can be found, an empty name is returned.

Parameters
font Font name

variant Variant for the font, this variant can be -Italic, -Bold, -Bold-Italic or empty.

Returns
Returns the name of the metrics file (without extension) or an empty string if no font was found.

104

Name
findWidth — Find the width of a character from a list of fonts. The first font of the list that contains the
character will be used.

Synopsis
<xsl:template name="findWidth">
<xsl:param name="name"/>
<xsl:param name="fonts"/>
<xsl:param name="variant"/>
<xsl:param name="fontInit" select="$fonts"/>
 ...
</xsl:template>

Description
Firstly, a check is done to verify if the character is not an invisible operator such as invisible time or apply
function. If it is one, the size 0 is returned. Otherwise, the character is checked among the font list.

The list is browsed to find a metrics file (using findFont function) that contains the character. If such
a file can be found, the width metric from this file is returned. Otherwise size 0.8 is returned.

To retrieve a width from a metric file, the template findWidthFile is used.

Parameters
name Character to check.

fonts Font list that is used to find the character width.

variant Variant for the font, this variant can be -Italic, -Bold, -Bold-Italic or empty.

<varlistentry>fontInit
Initial font list that is used to find the character width. Since the font list will be modified through the
recursion. The initial list has to be saved.
</varlistentry>

Returns
Returns the width of the character in em or 0.8em if the character is not found within the font list.

105

Name
findWidthFile — Find the width of a character from a font metrics file.

Synopsis
<xsl:template name="findWidthFile">
<xsl:param name="name"/>
<xsl:param name="fontName" select="'STIXGeneral'"/>
 ...
</xsl:template>

Description
Firstly, the final font name is computed by adding the extension .xml to the fontName parameter,
and the character code point is retrieved by using the XPath string-to-codepoints function. The
metrics file document tree is then retrieved by using the document function.

After that, the width attribute is retreived from the metrics document with respect to the font metrics
encoding. If the encoding is CID encoding, a glyph start index (gs) and unicode start value (us) are
computed to retrieve the attribute w (which contains the width of the character) from the (gi + 1 +
codePoint - us)th wx element of the metrics file. In all other cases (WinAnsiEncoding), the wdt
attribute (which contains the width of the character) from the char element whose its idx attribute is
codePoint.

Finally, if this width is zero, the width of x is returned instead. If no width was found, -1 is returned and,
in all other cases, the width divided by 1000 is returned.

Parameters
name Character to find.

fontName Name of the font metric file (without extension).

Returns
Returns the width of the character in em or -1 if the character is not found in the font metrics file.

106

Name
findBbox — Find the bounding box of a character from a list of fonts. The first font of the list containing
the character will be used.

Synopsis
<xsl:function name="func:findBbox" as="xs:double+">
<xsl:param name="name"/>
<xsl:param name="fonts"/>
<xsl:param name="variant"/>
 ...
</xsl:function>

Description
This function simply calls the findBbox template. It is used because functions are easier to call in some
cases than a template.

See
findBbox

Parameters
name Character to check.

fonts Font list that is used to find the character width.

variant Variant for the font, this variant can be -Italic, -Bold, -Bold-Italic or empty.

Returns
Returns the bounding box of the character in em or (0, 0, 0, 0) if the character is not found within the
font list. The bounding box is returned in a sequence of four elements: (xMin, xMax, yMin, yMax).

107

Name
findBbox — Finds the bounding box of a character from a list of font. The first font of the list that contains
the character will be used.

Synopsis
<xsl:template name="findBbox" as="xs:double+">
<xsl:param name="name"/>
<xsl:param name="fonts"/>
<xsl:param name="variant"/>
<xsl:param name="fontInit" select="$fonts"/>
 ...
</xsl:template>

Description
Firstly, a check is done to verify if the character is not an invisible operator such as invisible time or apply
function. If it is one, the bounding box (0, 0, 0, 0) is returned. Otherwise, the character is checked
among the font list.

The list is browsed to find a metrics file (using findFont function) that contains the character. If such
a file can be found, the bounding box metrics from this file is returned. Otherwise sequence (0, 0,
0, 0) is returned.

To retrieve a bounding box from a metric file, the template findBboxFile is used.

Parameters
name Character to check.

fonts Font list that is used to find the character bounding box.

variant Variant for the font, this variant can be -Italic, -Bold, -Bold-Italic or empty.

fontInit Initial font list that is used to find the character bounding box. Since the font list will be
modified through the recursion. The initial list has to be saved.

Returns
Returns the bounding box of the character in em or (0, 0, 0, 0) if the character is not found within the
font list. The bounding box is returned in a sequence of four elements: (xMin, xMax, yMin, yMax).

108

Name
findBboxFile — Finds the bounding box of a character from a font metrics file.

Synopsis
<xsl:template name="findBboxFile" as="xs:double+">
<xsl:param name="name"/>
<xsl:param name="fontName" select="'STIXGeneral'"/>
 ...
</xsl:template>

Description
Firstly, the final font name is computed by adding the extension .xml to the fontName parameter,
and the character code point is retrieved by using the XPath string-to-codepoints function. The
metrics file document tree is then retrieved by using the document function.

After that, the bounding box attribute is retrieved from the metrics document with respect to the font
metrics encoding. The bounding box can only be retrieved in the CID encoding. Therefore, the glyph start
index (gs) and unicode start value (us) are computed to retrieve the attributes xMin, xMax, yMin and
yMax, from the (gi + 1 + codePoint - us)th wx element of the metrics file. With a metrics file
encoded in WinAnsiEncoding, bounding box (0, 0, 0, 0) is returned.

If the character cannot be found in the metrics file, the value -1 is returned.

Parameters
name Character to find.

fontName Name of the font metric file (without extension).

Returns
Returns the bounding box of the character in em or -1 if the character is not found in the font metrics file.
The bounding box is returned in a sequence like that (xMin, xMax, yMin, yMax)

109

Name
findHeight — Finds height and depth of a string from a list of font by using the bounding box (from
metrics) of each character in the string. The first font of the list containing the character will be used.

Synopsis
<xsl:function name="func:findHeight" as="xs:double+">
<xsl:param name="str"/>
<xsl:param name="fonts"/>
<xsl:param name="variant"/>
 ...
</xsl:function>

Description
This function simply calls findHeightAlt template.

See
findHeightAlt

Parameters
str String to check.

fonts Font list that is used to find the character width.

variant Variant for the font, this variant can be -Italic, -Bold, -Bold-Italic or empty.

Returns
Returns the height and depth of a string in a sequence: (height, depth).

110

Name
findHeightAlt — Finds height and depth of a string from a list of font by using the bounding box (from
metrics) of each character in the string. The first font of the list containing the character will be used.

Synopsis
<xsl:template name="findHeightAlt">
<xsl:param name="str"/>
<xsl:param name="strLen"/>
<xsl:param name="i" select="1"/>
<xsl:param name="fonts"/>
<xsl:param name="variant"/>
<xsl:param name="height" select="0"/>
<xsl:param name="depth" select="0"/>
 ...
</xsl:template>

See
findBbox

Description
For each character, the bounding box is retrieved and the template is called recursively with an updated
value for height and width. For the height value, the maximum between yMax (from the bounding box)
and the height paramater is taken, and for the depth, the minimum between yMin (from the bounding
box) and the depth parameter is taken.

Parameters
str String to check.

strLen Number of characters in the string.

i Index of the character that is currently analysed.

fonts Font list that is used to find the character width.

variant Variant for the font, this variant can be -Italic, -Bold, -Bold-Italic or empty.

height Accumulator that saves the highest height for the first i characters.

depth Accumulator that saves the lowest depth for the first i characters.

Returns
Returns the height and depth of a string in a sequence: (height, depth).

